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a b s t r a c t
The kinetic, isotherm, and thermodynamic investigations of the heavy oil spills removal by 
aminated chitosan-g-poly(butyl acrylate) copolymer have been carried in this study. The kinetic 
studies of the heavy oil spills removal by both adsorption and absorption processes were carried 
out using different models namely; pseudo-first-order, pseudo-second-order, and Elovich mod-
els. The oil diffusion control process studied by both intraparticle diffusion and Boyd diffusion 
models. The isotherm of the removal process under equilibrium conditions was investigated by 
Langmuir, Freundlich isotherm, and Temkin models. Furthermore, the thermodynamic of the 
process has been also depicted. The obtained results indicated the removal process followed the 
pseudo-first-order and pseudo-second-order in a very good way and followed both the Langmuir 
and Freundlich isotherm. The maximum monolayer sorption capacity was found as 41.49, 84.0, 
and 100.0 g/g for aminated chitosan, aminated chitosan-g-poly(butyl acrylate) 10, and aminated 
chitosan-g-poly(butyl acrylate) 20, respectively. The thermodynamic studies revealed that sorption 
was spontaneous and endothermic in nature.
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1. Introduction

Water contamination with oil spills is a common 
and universal problem facing environmental scientists 
around the world [1]. The toxic impacts of some compo-
nents of the oil spills or their derivatives on both aquatic 
lives and on human life, directly or indirectly, are well 
recognized [2,3]. Such challenge-driven much attention 
for developing treatment techniques for the oil spills con-
taminated water ranged from biological to mechanical 
ones [4–7]. Different materials have been developed and 

used as sorbents for oil spills [8,9]. For many reasons and 
advantages, nature-based sorbents are recommended [10]. 
Drawbacks such as low hydrophobic character and limited 
oil sorption capacity compromised the wide application 
[11]. Many ideas have been investigated to overcome such 
drawbacks such as induced lauric acid to the structure 
[12], grafting with acrylate polymers [13–15], and forma-
tion of Schiff bases [16]. Among natural-based materials, 
chitosan comes in the lead for treatment of contaminated 
waters due to its reach structure with both hydroxyl and 
amine groups [17–21]. To widen its applicability, many 
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modifications routes have been investigated including the 
grafting technique [22–25].

Our previous research project is to develop chitosan 
derivatives for oil spills applications carried out in two steps. 
As first step, chitosan modified to have aminated chitosan 
and nonanyl-chitosan Schiff base [16]. The second step was 
the grafting of chitosan [20], aminated chitosan [26], and 
nonanyl-chitosan [27] with hydrophobic–oleophilic poly-
mers poly(butyl acrylate). Furthermore and for a better 
understanding of the oil spills removal process, the kinetic, 
isotherm, and thermodynamic parameters have studied for 
the developed chitosan derivatives [28], chitosan grafted 
poly(butyl acrylate) [29], and nonanyl-chitosan grafted 
poly(butyl acrylate) [27].

In the current work, a novel approach has been devel-
oped to overcome drawbacks such as low hydrophobic 
character and limited oil sorption capacity [11]. First, the 
low hydrophobic character of the chitosan increased through 
the attachment of the benzene ring of the para-benzoqui-
none during the amination step, and through the grafting 
step of poly(butyl acrylate). Furthermore, the limited oil 
sorption capacity overcome by the acquired oleophilicity 
of the poly(butyl acrylate) branches grafted to the devel-
oped aminated chitosan-g-poly(butyl acrylate) copolymer. 
Accordingly, the developed adsorbent has two mechanisms 
of oils spills removal; adsorption through the hydrophobic 
moieties and absorption through the oleophilic moieties.

For a better understanding of the removal process, the 
current research aimed to study the kinetic, isotherm, and 
thermodynamic of the heavy oil spills removal by aminated 
chitosan-g-poly(butyl acrylate) copolymer to complete our 
previous studies.

2. Materials and methods

2.1. Materials

Shrimp shells were collected from Marine Waste Sources 
in Alexandria (Egypt), N-butyl acrylate (98%), p-benzoqui-
none (PBQ; 99%), potassium persulphate (KPS; 99%) were 
purchased from Sigma-Aldrich (Germany). Ethylenediamine 
(EDA; 99%) was purchased from Alfa Aesar (Germany). 
Sodium hydroxide (99%), ethanol (99%), hydrochlo-
ric acid (purity 37%), and acetic acid (98%) were brought 
from El-Nasr Company (Alexandria). Heavy crude oil was 
kindly provided by Belayem Petroleum Company (Egypt), 
with viscosity kinetic at 40°C (Centistokes) equal to 110.

2.2. Methods

2.2.1. Preparation of aminated chitosan (Am-Ch)

First, chitin was extracted from the shell and further 
deacetylated to have chitosan according to the reported pub-
lished method [30]. Aminated chitosan derivative obtained 
based on our previously published method [31].

2.2.2. Preparation of aminated chitosan-poly(butyl acrylate) 
graft copolymer (Am-Ch-g-BuA)

Two aminated chitosan-poly(butyl acrylate) graft copo-
lymers (Am-Ch-g-BuA) were prepared and encoded as 

Am-Ch-g-BuA10 and Am-Ch-g-BuA20 (Table 1). The details 
of the grafting process were mentioned elsewhere [26].

2.2.3. Batch oil adsorption experiments

The oil adsorption process was achieved based on the 
Standard Test Method for adsorbent performance (ASTM 
F726-99) [32] using an oil-artificial seawater system. 
Various amounts of oil were poured into a 500 mL beaker 
containing 300 mL of artificial seawater, and then a fixed 
adsorbent dose was added and spread on the oil–water 
surface under selected shaking rates at different tempera-
tures ranged from 25°C to 40°C for a known contact time 
(10–300 min). The heavy crude oil was used to perform the 
study. The sorption capacity was calculated according to 
the Standard Method (ASTM F726-99) as follows:

Oil sorption capacity g/g� � � � �� �W W W
W

s w 0

0

 (1)

where Ws, Ww, and W0 are the weight of the saturated adsor-
bent (water + oil + adsorbent), the weight of the adsorbed 
water, and the initial dry weight of the adsorbent in g, 
respectively. The quantity of adsorbed water was determined 
through the extraction separation using n-hexane as the 
solvent.

3. Results and discussion

3.1. Effect of the sorption time and sorption kinetics

Fig. 1 shows the effect of varying the sorption time 
on the sorption capacity of the aminated chitosan and its 
grafted derivatives sorbents. The illustrated data indicate 
that the grafting process has a positive impact on the sorp-
tion capacity which almost duplicated. For all the sorbents, 
the sorption capacity have been increased with progress 
of sorption time and reach its maximum values after 3 h. 
Slight decline of the sorbent capacity was noticed with pro-
longation of the sorption time to 4 h. It is worthy to men-
tion here that only 30 min are enough for the poly(butyl 
acrylate) grafted aminated chitosan to remove the same 
amount of oil performed by chitosan sorbent after 180 min. 
This is an indication of the fast initial rate of oil sorption 
of the poly(butyl acrylate) grafted aminated chitosan deriv-
atives. For better understanding of the sorption process, 
the obtained data were treated by various kinetic models 
namely; pseudo-first-order, pseudo-second-order, and sim-
ple Elovich, models [33,34]; Figs. 2a–c. The kinetic models 
represented by the following linear form Eqs. (2)–(4);

Table 1
DD and GP (%) of Am-Ch and its grafted copolymers (Am-Ch-
g-BuA)

Sample DD (%) GP (%)

Am-Ch 91 0.0
Am-Ch-g-BuA10 91 77.0
Am-Ch-g-BuA20 91 93.5
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where qe and qt (g/g) are the crude heavy oil sorption 
capacity at equilibrium and time t (min). k1 (min–1) and 
k2 (g/g min) are the constant rate parameters of the pseudo- 
first-order and the pseudo-second-order sorption. β 
(g/g) and α (g/g min) are reporting the number of possi-
ble adsorptive sites and the sorption extent. The kinetic 
parameters extracted from the presented Figs. 2a–c were 
tabulated in Table 2.

From the tabulated results it is obvious that the sorp-
tion process data fitted very well with both the pseu-
do-first-order and the pseudo-second-order models since 
they provided fit values of the correlation coefficient (all 
values of R2 are close to 1). The theoretical (qexp) and the 
figured (qcal) values of the oil sorption capacity are pre-
sented in Table 2 and indicated that the sorption behavior 
of the Am-Ch sorbent best described by the pseudo-first- 
order, while the sorption behavior of the poly(butyl acry-
late) grafted aminated chitosan derivatives (Am-Ch-g-BuA) 

Fig. 1. Effect of the sorption time on the crude oil sorption 
capacity.

Fig. 2. Kinetics models for the sorption of the crude oil onto the prepared chitosan derivatives; (a) pseudo-first-order, 
(b) pseudo-second-order model, (c) simple Elovich, (d) intraparticle diffusion model, and (e) Boyd model.
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is best described by the pseudo-second-order models 
[35,36]. That extracted data indicate the physisorption 
mechanism of the sorption process by the Am-Ch sorbent 
turned to be a chemisorption mechanism by the Am-Ch-g-
BuA derivatives [37]. The change of the chemical structure 
and the morphological nature resulted from the grafting 
process contributed mainly in driven of the sorption pro-
cess nature from the physisorption mechanism showed 
by Am-Ch sorbent to the chemisorption mechanism by 
the Am-Ch-g-BuA derivatives.

The probability that the oil sorption was taking place 
in the water/oil/Am-Ch sorbents system, and comprising 
the contribution of other forces, besides the regular Van der 
Waal’s forces, has been assessed by concerning the Elovich 
model. It assumes that the actual adsorbent surfaces are 
energetically-heterogeneous. The Elovich equalization 
does not submit any particular mechanism for the adsor-
bate–adsorbent reactions. It has comprehensively been 
established that the chemisorption can be described by this 
model. The kinetic data plotted in Fig. 2c and the parame-
ters scheduled in Table 2 indicate a good correlation among 
the theoretical lines and the experimental points. In addition, 
the correlation coefficient, R2 values for Am-Ch, Am-Ch-
g-BuA10, and Am-Ch-g-BuA20 were agreed with the R2 
values obtained from the pseudo-second-order model. It 
supposes that the Elovich model well describes the kinet-
ics of the crude oil sorption on the surface of the Am-Ch  
sorbents [36].

Prediction of the oil diffusion mechanism during the 
sorption process performed through using two kinetic 
models namely; intraparticle diffusion [Eq. (5)] and the 
Boyd model [Eq. (6)] described below [12,38]:

q K t Ct p� �0 5.  (5)

B F Ft � � � �� � �0 498 1 0 85. ln .for  (6)

where Kd (g/g min) is the intraparticle diffusion rate con-
stant and C is the intercept. F is the fraction of solute 
adsorbed at any time (F = qt/qe).

Fig. 2d shows two stages curves for Am-Ch and its 
grafted derivatives. The first, sharper stage is the surface 
sorption. The kinetic parameters of the intraparticle dif-
fusion extracted from the second straight line stage (Table 
2). The Kd values (Table 2) are 4.26, 5.55, and 7.23 (g/g min) 
for Am-Ch, Am-Ch-g-BuA10, and Am-Ch-g-BuA20, suc-
cessively. The presented data verified that Am-Ch grafted 
copolymers support enhanced the sorption of the crude oil 
compared with the Am-Ch based sorbent. This is in agree-
ment with the results published by Itodo et al. [39]. Also, 
all the linear curves not passed through the origin, that is, 
(C > 0) which proved attributable to the difference in the 
mass transfer rate from the initial to final sorption stages 
[39]. Further, the depth of the boundary layer is extracted 
from the intercept values. Table 2 indicated that the bound-
ary layer thickness tends to be greater in the case of the 
grafted derivatives sorbents. According to Itodo et al. [39] 
assumption, the presented data in Table 2 indicate that 
the transport mode is governed by more than one process 
which means that two or more steps transpire [40]. Besides, 
it indicates that the intraparticle diffusion is not the only 
rate defining step.

To determine which step is the controlling one in the 
oil diffusion process, the sorption data were fitted by Boyd 
kinetic model; Fig. 2e. The figure shows that straight lines 
obtained which did not pass through the origin. That obser-
vation confirmed that the film-diffusion is the rate-controlling 
mechanism. Other authors investigated this issue [41,42].

3.2. Effect of the initial oil concentration and sorption isotherms

Fig. 3 demonstrates the impact of varying the oil 
concentration on the sorption capacity of the Am-Ch and 
its grafted derivatives. From the Fig. 3, we can see that the 

Table 2
Sorption parameters of kinetic models

Kinetic model Am-Ch Am-Ch-g-BuA10 Am-Ch-g-BuA20

Isotherm Parameter Value

Pseudo-first-order qe,cal (g/g) 64.35 136.40 147.16
qe,exp (g/g) 61.64 128.28 140.00
k1 (min–1) 0.0246 0.0202 0.0211
R2 0.9987 0.9960 09980

Pseudo-second-order qe,cal (g/g) 52.36 131.58 137.00
qe,exp (g/g) 61.64 128.28 140.00
k2 (g/g min) 0.2652 0.2893 0.2239
R2 0.9552 0.9635 0.9517

Elovich model α (g/g min) 30.114 75.481 79.617
β (g/g) 18.102 39.273 42.633
R2 0.9825 0.9925 0.9800

Intraparticle diffusion C 118.36 202.69 238.09
Kd 4.29 5.55 7.23
R2 0.9644 0.9999 0.9814



323T.M. Tamer et al. / Desalination and Water Treatment 226 (2021) 319–327

increase of the oil concentration from 8.33 to 33.32 g/L has 
a positive linear effect on the sorption capacity of the used 
sorbents. Further increment of the oil concentration, up to 
50 g/L, showed a slower increment of the sorption capac-
ity. The figure also demonstrated a clear positive impact 
of the grafting process where the sorption capacity of the 
grafted sorbents, Am-Ch-g-BuA10, and Am-Ch-g-BuA20, is 
2.4 and 2.9 folds of the Am-Ch based sorbent. This finding 
strongly supports the benefits of the grafting modification 
technique. Two main causes for such improvement could 
be mentioned here; the hydrophobicity of the BuA graft 
branches [43], in addition to its oleophilic nature [33,38]:

To describe the adsorption process and understand its 
nature, the relation between the oil spills and the sorbents 
surface and consequently their sorption capacities, the 
illustrated data in Fig. 3 fitted with different isotherm mod-
els. Three isotherm models, linear form, have been used 

according to the following equations: Langmuir [Eq. (7)] 
Freundlich [Eq. (8)], and Temkin [Eq. (9)] [35,44].

C
q q K

C
q

e

e L

e� �
1

max max

 (7)

ln ln lnq K
n

Ce F e� �
1  (8)

q B K B Ce T T T e� �ln ln  (9)

where qmax (g/g), Ce (g/L), and KL (L/g) is the saturated sorp-
tion capacity, the crude oil concentration at equilibrium, 
and the Langmuir isotherm constant, respectively. 1/n and 
KF are the Freundlich constants belonged to sorption inten-
sity and sorption capacity. B (J/mol) is the heat of sorption, 
and KT (L/g) is the highest binding energy of adsorbent and 
adsorbate.

The data illustrated in Figs. 4a–c where the isotherm 
parameters extracted and tabulated in Table 3. The data 
show that the Langmuir isotherm described very well of 
the sorption process. The correlation coefficients (R2) are 
close to 1.0 for all the sorbents. That finding indicates the 
strong attraction between the oil spills and the sorbents 
surface. Furthermore, confirms the affinity of the sorbents 
toward the sorption of the oil dispersed in the aqueous 
medium [45]. On the other hand, the fundamental char-
acteristics of the Langmuir isotherm, the dimensionless 
separation factor (RL), can be expressed by Eq. (10) and 
tabulated in Table 4.

R
K CL
L

�
�
1

1 0

 (10)

Fig. 3. Effect of the initial crude oil concentration on the sorption 
equilibrium.

Fig. 4. Equilibrium isotherms for the sorption of the crude oil onto the prepared chitosan derivatives; (a) Langmuir, (b) Freundlich, 
and (c) Temkin isotherms.
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Table 4 indicates the RL values were between 0.0 and 1.0 
demonstrating the favourable sorption of the crude oil on 
the used sorbents. The obtained R2 values of Langmuir 
isotherm and the Freundlich isotherm model are higher 
than 0.94 which postulate that both monolayer and mul-
tilayer sorption played a very important role in the 
crude oil- uptake by all the used sorbents [35]. The maxi-
mum monolayer sorption capacities were obtained to be 
41.5, 84.0, and 100 g/g for Am-Ch, Am-Ch-g-BuA10, and 
Am-Ch-g-BuA20, respectively. Furthermore, the high 
adsorbent/adsorbate interaction confirmed by the positive 
and higher values of the BT parameter obtained from the  
Temkin plot (Table 3).

3.3. Effect of the sorption medium temperature and 
thermodynamics

The behaviour of the oil sorption process for all sorbent 
samples was evaluated under different sorption medium 
temperatures ranged from 25°C to 40°C as shown in Fig. 5. 
The maximum sorption capacity was detected at 35°C. A 
slight decline noticed with a further acceleration of tem-
perature to 40°C. These consequences could be described 
by promoting the segmental movement for all analyzed 
adsorbents, where the diffusion rate of oil spill mole-
cules into the adsorbent surface enhanced with raising the 
temperature up to 35°C [44].

The thermodynamic parameters (Table 5) investigated 
from Fig. 6 incline and intercept were determined using 
the following equations [43]:

K
Q
CD
e

e

=  (11)

lnK H
RT

S
RD � � �

� �  (12)

where ΔG and ΔH are in kJ/mol, ΔS is in J/mol K, T is the 
sorption temperature in K, and R is the universal gas 
constant (8.314 J/mol).

Information extracted from the negative ΔG values, for 
used sorbents; imply that we have a spontaneous sorption 

process. On the other hand, the endothermic nature of 
the sorption process reflected by the positive values of 
the ΔG. That finding explained the positive impact of ele-
vation sorption temperature on the oil sorption capacity 
[44]. In addition, it is indicated also the complication of 
the sorption due to simultaneous chemical and physical 
reactions. Furthermore, the interface between sorbents 
and oil spills tends to be more random during the oil 
spills removal process. However, the positive value of 
ΔS intends the increase in randomness at the adsorbent/
adsorbed interface during the sorption process [46].

3.4. Sorption capacity comparative study

The obtained maximum monolayer sorption capacity in 
this study by Am-Ch and its graft copolymers derivatives has 
been compared with other bio-based adsorbents developed 
by other authors (Table 6). It can be seen that our developed 
Am-Ch graft copolymers derivatives show high sorption 
capacity than most compared sorbents [47,48,50,51] and less 
than others especially the porous one [49]. However, this 
comparison is unfair owing to the diversity of the operating 
conditions and the chemical composition of the compared 
sorbents.

4. Conclusion

Chitosan bio-based graft copolymers sorbents have 
been developed through grafting aminated chitosan with 
butyl acrylate. The developed derivatives have been tested 

Table 4
RL values of the Freundlich isotherm

RL

C0 (g/L) Am-Ch Am-Ch-g-BuA10 Am-Ch-g-BuA20

8.33 0.0091 0.0259 0.0345
16.66 0.0046 0.0131 0.0176
33.32 0.0023 0.0066 0.0089
50 0.0015 0.0044 0.0059

Table 3
Parameters of the different isotherm models and correlation coefficients for the sorption of the crude oil

Adsorbent type Am-Ch Am-Ch-g-BuA10 Am-Ch-g-BuA20

Isotherm Parameter Value

Langmuir qmax (g/g) 41.49 84.03 100
KL (L/g) 13.05 4.52 3.36
R2 0.998 0.999 0.966

Freundlich KF (g/g) 6.00 19.60 25.82
1/n 0.467 0.420 0.426
R2 0.9436 0.9678 0.9810

Temkin KT (L/g) 0.7839 2.303 3.362
BT (J/mol) 9.263 17.726 20.463
R2 0.943 0.999 0.995
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in the removal of crude heavy oil spills from saline water. 
Through the study, the kinetic, isotherm, and thermody-
namic characterization of the oil sorption process have been 
performed. The kinetic studies using pseudo-first-order, 
pseudo-second-order, and Elovich models show that the 
sorption process followed basically the pseudo-second-or-
der law. The oil diffusion process studied by both intrapar-
ticle diffusion and Boyd diffusion models shows that the 
film-diffusion is the rate-controlling mechanism. The iso-
therm of the removal process under equilibrium conditions 
was followed by both the Langmuir and Freundlich iso-
therm. The maximum monolayer sorption capacity could be 
arranged in the following order; aminated chitosan < ami-
nated chitosan-g-poly(butyl acrylate) 10 < aminated 

chitosan-g-poly(butyl acrylate) 20. Furthermore, the ther-
modynamic of the process revealed that the sorption 
process was spontaneous and endothermic in nature.
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