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a b s t r a c t
Microplastics (MPs), recently gain notable attention since they are detected in water bodies. Increasing 
production and recurrent short-term usage of plastic products enhance their disposal rates. They 
are originated from land-based or sea-based sources related to anthropogenic activities. Wastewater 
treatment plants (WWTPs) and applied technologies are under investigation, as a potential source 
of microplastic contamination. Although typical WWTPs are found to be able to remove from 70% 
to more than 90% of microplastics from wastewater, these plastic particles, smaller than 5 mm, are 
detected in effluents. Even small concentrations of microplastics in WWTPs effluents can have a sig-
nificant accumulative effect, since WWTPs release a large amount of treated wastewater continuously. 
It is worth mentioning that the daily discharge of microplastics from a WWTP, as estimated, can reach 
a few million particles. Microplastics’ concentration that has been reported in effluents ranges between 
less than 0.5 particles/L to more than 50 particles/L. This study focuses on the contamination of surface 
waters from MPs, as a result of WWTPs’ effluents. A thorough review of current research is targeted 
to summarize the reported MPs concentration measurements in the wastewater treatment processes, 
the WWTPs efficiency and MPs removal rates, as well as the prevailing MPs identification techniques.
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1. Introduction

Plastic pollution is an increasingly major concern among 
scientific communities, as plastic production, consumption 
and waste disposal is intensifying. In the European Union 
alone 150,000–500,000 tons of plastic waste is identified 
in the ocean each year [1]. Not to mention that most plas-
tic materials are non-biodegradable and their degradation 
can continue for 100 y, which is extremely disproportional 
with current plastic disposal rates. It is very important in the 
framework of waste management and taking into account the 
European Directive 2019/904 on the reduction of the impact 

of certain plastic products on the environment. Waste strate-
gies [2,3] play a vital role in environmental protection.

Unfortunately, the COVID-19 pandemic pushes back 
against any effort that has recently been made in reducing 
plastic consumption and increasing public awareness. Plastic 
is the fundamental material for medical and protective 
equipment and single-use plastics are making people feel 
safer, during the pandemic, inducing an ongoing increase in 
single-use plastics and creating a new challenge in beating 
plastic pollution [4,5].

Microplastics (MPs) are extremely small plastic particles 
in the size of 1 nm–5 mm [6]. Microplastic pollution is caused 
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either by primarily produced particles on a micro-scale or by 
secondary produced particles as a result of degradation and 
fragmentation of larger particles [7].

Wastewater treatment plants (WWTPs) have recently 
been determined as a critical source of microplastics in 
the aquatic environment [8–10]. Urban wastewater, in the 
developed world, is collected and treated in WWTPs before 
released in the water aqueducts [11,12]. Apparently, WWTPs 
with existing treatment technology, cannot sufficiently 
remove microplastics, mainly due to their small size and the 
fact that they are not biodegradable. WWTPs can retain 70%–
90% of microplastics during the first stages of treatment, that 
is, grit and grease removal chambers and primary sedimen-
tation [13–16]. Although contemporary advanced treatment 
technologies such as membrane filtration can improve the 
microplastics removal competence, a small amount of MPs 
can still escape and reach surface water [17,18]. According 
to the literature, the most common MPs found in wastewa-
ter are fibers [14,18–20], which originate from personal care 
products and washed synthetic. It is estimated that 4,594–
94,500 MPs can be released after a single usage of a personal 
care product containing micro-particles [21]; 6.0 kg washing 
machine cycle of synthetic textiles may release up to 700,000 
plastic fibers to sewerage system [22]; 1.6 g of toothpaste 
could contain about 4,000 MP particles [13].

The contribution of this study is the collection and thor-
ough review of the majority of recently published research 
(in the 7-y period 2013–2019) that focuses on MPs’ detection 
in WWTPs. The identification of the reported detection tech-
niques of MPs, and evaluation of the WWTPs’ effluent con-
centration and removal rates of MPs after treatment, through 
this study, serve as the first step towards the recognition of 
the importance of emerging new technologies not only for 
the biological treatment of wastewater but also other constit-
uents’ removal.

2. Microplastics’ detection in wastewater

According to recent bibliography, MPs’ detection in 
wastewater comprises three main steps: a collection of sam-
ples, samples’ preparation and pre-treatment, and particles’ 
quantification and characterization [23]. In the following 
paragraphs, these three steps will be analyzed. MPs’ concen-
tration is expressed in a number of microplastics per mass or 
per volume of the sample matrix [18].

2.1. Sampling

Samples were usually taken from raw wastewater, 
from various stages of the treatment facility and from the 
WWTPs’ effluents. In most cases, samples were taken from 
established sampling ports inside a WWTP, from outlet 
flumes or from treatment tanks, some centimeters below 
the surface of the water, or by skimming the surface of the 
water.

Sampling techniques included taking samples manu-
ally with a container or taking composite samples by auto-
matic samplers. Samples can also be sieved in situ, in order 
to increase the volume of samples that can be analyzed 
[24–26]. Otherwise, wastewater can be sampled by pump-
ing a large volume of water through one or a series of sieves 

with different mesh sizes. Researchers reported that when 
using containers in sampling, a lower volume of water can 
be collected, and samples are more susceptible to air-born 
contamination [27]. Precautionary measures must be taken 
during collection and analysis, to prevent sample contami-
nation. Proper sampling requires rinsing of the equipment 
with water before use, avoiding synthetic textiles clothing, 
avoiding if possible plastic equipment, covering samples to 
protect them from contacting air, filtering of all used solu-
tions [18,24,26,28,29]. It must be noted that, in all examined 
studies, blank samples were also analyzed to detect any sam-
ple contamination [15,16,25,26].

2.2. Samples’ pre-treatment

The main target of pre-treatment is to remove all other 
particles that can be confounded with microplastics, such 
as organic and inorganic material, before quantification and 
characterization of microplastics. The most widely used 
pre-treatment procedures are organic matter removal and 
density separation.

A commonly applied method for organic matter removal 
is oxidation, by the use of hydrogen peroxide H2O2 [30]. This 
method requires a 3–7 d period to acquire sufficient results 
[20,31]. The required amount of time is reduced to some 
minutes (5–10 min) when applying H2O2 in the presence of 
an iron(II) catalyst, [14,29,32,33]. This process derives from 
Fenton’s reaction and it is called wet peroxide oxidation 
(WPO) [34].

A more complex pre-treatment procedure includes sam-
ples’ hydrolysis. It is applied by utilizing a cellulose digesting 
enzyme to digest cellulose fibers, followed by WPO [25,35], 
or by a multi-step plastic preservative enzymatic maceration, 
utilizing enzymes protease, lipase and cellulose, followed by 
hydrogen peroxide and chitinase solution application [15]. 
Furthermore, sodium dodecyl sulfate can be added to waste-
water samples in order to achieve detachment of microplastic 
from other bigger organic and inorganic particles before fil-
tration steps [15,25,35].

Density separation of microplastics from inorganic mate-
rial, is another pre-treatment procedure which is suggested 
by using zinc chloride (ZnCl2) solution [15,29], sodium chlo-
ride NaCl [18,26], or sodium iodide NaI [20].

Gies et al. [36] use a liquid–liquid extraction technique 
referred to as oil extraction protocol. This method takes 
advantage of the lipophilicity of plastic polymers. In this 
study, the canola oil was allowed to separate from the waste-
water, and MPs were trapped in the canola oil layer.

Although a pre-treatment procedure is necessary for an 
efficient quantification and characterization of MPs in waste-
water, it can have the opposite effect, if not applied properly. 
Pre-treatment may alter MPs’ characteristics, such as their 
chemistry, structure and size [32]. However, the most fre-
quently used WPO pre-treatment is found not to have any 
effect on the Fourier-transform infrared (FTIR) spectrum of 
microplastics [31].

2.3. Visual observation and characterization

The final stage in MPs’ detection is visual quantification 
and characterization of microplastics. Visual analysis can be 
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accomplished by the use of a microscope to identify the par-
ticles’ characteristics, such as color and shape [23,37]. Under 
the microscope, organic material can be distinguished from 
other particles by observing characteristics such as apparent 
cellular structure or softness, friability and easy disintegra-
tion of material under mild pressure [13,27].

However, by using only visual observation, positive char-
acterization of particles as MPs may be possibly false. Thus, 
FTIR and micro-FTIR analysis, which are based on charac-
teristic spectra of MP particles, were applied in numerous 
studies sampling wastewater [18,20,24,26]. Up to 70%–90% 
of possible MPs detected by microscopy were not verified 
as microplastics by FTIR analysis [20,38,39]. Identification of 
MP particles, with a diameter of less than 1 mm, using solely 
microscopy could be arduous [40].

Ultimately, a combination of microscopy and spectroscopy 
can be applied. Microscopy serves as a preliminary step for 
the isolation of possible microplastic particles [26,39]. Then a 
subsample can be examined with spectroscopy. Alternatively, 
Song et al. [40] proposed the use of FTIR spectroscopy to 
define a set of criteria, which then will be used for identifying 
microplastics by examining samples in the microscope.

Other known techniques for particles characterization are 
Raman spectroscopy [41,42] and pyrolysis–gas chromatogra-
phy–mass spectrometry (pyrolysis-GC–MS), even though it 
is not frequently used in analyzing wastewater samples.

FTIR microspectroscopy (micro-FTIR) is a tool that com-
bines FTIR spectroscopy with microscopy [31] and enables 
the detection of small particles even down to 20 µm size. 
Application of modern focal plane array detectors, instead 
of single element detection, reduces required time for FTIR 
analysis, sustaining maximum resolution [15].

3. WWTPs’ contribution to microplastic pollution

Recent studies reveal the presence of MPs in WWTPs 
effluents and report the efficiency of different treatment 
stages and technologies in MPs removal. Summarized 
reported effluent concentration and removal rates of MPs 
after wastewater treatment, are shown in Table 1, according 
to the recent bibliography (2013–2019).

Researchers examine WWTPs contribution to MPs pol-
lution, by sampling raw wastewater, the outflow of each 
treatment stage of the plant and facilities’ effluents. Both 

Table 1
Reported effluent concentration and removal rates of MPs after wastewater treatment

Reference Mean concentration 
(particles/L)

Removal 
rate (%)

Detection  
technique

Treatment 
level

Treatment type Particles’ 
size (µm)

[17] 52 – Microscopy Secondary – –
[17] 51 – Microscopy Tertiary MBR –
[19] 35 95 Microscopy Secondary Biofilters 100 – 5,000
[28] 8.6 98 Microscopy Tertiary Biological filtration 20 – > 200
[14] 0.06 – Microscopy Tertiary Granular (gravel, sand, anthracite 

coal)/biological aerated filter
125 – > 355

[14] 0.05 – Microscopy Secondary – 125 – > 355
[43] 5.9 93.8 Microscopy Secondary Activated sludge 20 – 4,750
[43] 2.6 97.2 Microscopy Tertiary Granular sand filter 20 – 4,750
[43] 0.5 99.4 Microscopy Tertiary Anaerobic MBR 20 – 4,750
[24] 0.25 98.4 Spectroscopy- 

(FTIR)
Secondary Aeration basin 65 – > 5,000

[37] 0.089 – Microscopy Secondary – 125 – > 355
[37] 0.083 – Microscopy Tertiary – 125 – > 355
[20] 0.21 – Spectroscopy- 

(FTIR)
Tertiary Ultrafiltration – RO 25 – > 500

[20] 0.48 – Spectroscopy- 
(FTIR)

Secondary Secondary aeration 25 – > 500

[20] 1.54 – Spectroscopy- 
(FTIR)

Primary Sedimentation 25 – > 500

[18] 63 72 Spectroscopy- 
(FTIR)

Secondary – 10 – 5,000

[18] 51 Spectroscopy- 
(FTIR)

Tertiary MBR 10 – 5,000

[27] 0.03 98.5 Spectroscopy- 
(FTIR)

Tertiary Discfilter 20 – > 300
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wastewaters originated from domestic, commercial and 
industrial uses or from combined sewer systems are tested. 
Sampled WWTPs show large heterogeneity in treatment 
types, however, in this research, the facilities are grouped by 
level of treatment, primary, secondary and tertiary. Primary 
treatment refers to screening, grit and grease removal includ-
ing or not primary sedimentation; secondary treatment refers 
to biological treatment and sedimentation; tertiary refers to 
more advanced treatment, such as membrane bioreactor 
(MBR) or other advanced filtration techniques.

Detected effluent concentration varies between 0.0023–
131.5 particles/L and removal rate between 72%–99.9%. The 
smallest particle that is considered by researchers, is 10 µm 
and the largest 5,000 µm, which is the upper size limit for a 
particle to be characterized as microplastic. These results are 
thoroughly discussed in the next section.

The statistical analysis was conducted with the imple-
mentation of the Python 3.7 programming language under 

the Spyder 3 integrated development environment, which 
are included in the Anaconda 3 package [45].

4. Results and discussion

After having identified the existence of MPs in wastewa-
ter and the prevailing detection techniques, the contribution 
of WWTPs to MP pollution remains to be addressed. That can 
be achieved either by estimating the concentration of MPs 
in the treated wastewater effluents, or by assessing the MP 
removal rates after the treatment.

The key findings of this research are presented in the fol-
lowing graphs and discussed in this section.

Fig. 1 summarizes the reported removal rates of MPs after 
wastewater treatment, included in the recent bibliography 
(2013–2019). Overall removal rates are between 72.0%–99.9%, 
and the majority of facilities are found to be able to remove 
more than 90% of inserted MPs. Whether this efficiency level 

Reference Mean concentration 
(particles/L)

Removal 
rate (%)

Detection  
technique

Treatment 
level

Treatment type Particles’ 
size (µm)

[27] 0.02 97.1 Spectroscopy- 
(FTIR)

Tertiary Rapid sand filters 20 – > 300

[27] 0.1 95 Spectroscopy- 
(FTIR)

Tertiary Dissolved air flotation 20 – > 300

[27] 0.005 99.9 Spectroscopy- 
(FTIR)

Tertiary MBR 20 – > 300

[36] 0.5 98.3 Spectroscopy- 
(FTIR)

Secondary Trickling filters 64 – > 64

[41] 0.0027 73 Spectroscopy- 
(Raman)

Secondary Aeration tanks 55 – 5,000

[41] 0.0023 79 Spectroscopy- 
(Raman)

Secondary Aeration tanks 55 – 5,000

[42] 1 98.3 Spectroscopy- 
(FTIR, Raman)

Secondary Activated sludge 250 – > 5000

[42] 0.4 99.4 Spectroscopy- 
(FTIR, Raman)

Tertiary MBR 250 – > 5000

[33] 0.44 98 Spectroscopy- 
(FTIR)

Secondary Anaerobic-anoxic-aerobic (A2O) 106 – > 300

[33] 0.14 Spectroscopy- 
(FTIR)

Secondary Sequence batch reactor (SBR) 106 – > 300

[33] 0.28 Spectroscopy- 
(FTIR)

Secondary Media 106 – > 300

[25] 131.5 99.3 Spectroscopy- 
(FTIR)

Secondary Activated sludge 10 – 500

[25] 19 Spectroscopy- 
(FTIR)

Tertiary Rapid sand filtration 10–500

[44] 13.65 98.1 Microscopy Secondary Activated sludge 60 – > 418
[26] 0.4 84 Spectroscopy- 

(FTIR)
Tertiary Sand filter 63 – 5,000

Table 1 Continued
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of the WWTPs, with respect to the MPs removal, is satis-
factory or not, in view of the environmental pollution and 
human health, remains to be investigated.

Fig. 2 presents the reported removal rates during dif-
ferent treatment stages of various WWTPs. It is worth men-
tioning that the MPs removal efficiency of WWTPs depends 

on the size of particles that are taken into consideration. 
Smaller particles are more abundant in the samples [25], and 
their removal rates are lower [15,16,19,44]. Among reviewed 
research papers, particles as small as 10 µm were measured 
only in two studies, while particles bigger than 20 µm were 
examined by the majority of the research teams. Nonetheless, 

 
Fig. 1. Overall removal rates (%) of MPs from WWTPs.

 
Fig. 2. MPs removal rates (%) after wastewater treatment.
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MPs research has to develop methods to specifically target and 
detect nanoparticles (<<10 µm) in environmental matrices [18].

WWTPs are more effective in removing larger particles, 
according to studies that reported less or no large particles in 
effluent (>1 mm, in [19]), (>0.355 mm, in [14]), (>500 µm, in 
[15]), (>418 µm, in [44]). Higher retention percentages were 
reported in primary treatment stage (Fig. 2), whereas sec-
ondary and tertiary treatment exhibited significantly lower 
retention rates. It should be noted that particles which are 
removed from wastewater are re-directed to sludge treat-
ment of the same facility [18,26,46]. As a result, wastewater 
sludge comprises another possible source of microplastics in 
the environment, which will be investigated separately.

Although reported MPs concentration in effluents is rel-
atively low, in many cases lower than 0.5 particle/L, their 
accumulative effect cannot be neglected, since huge quan-
tities of wastewater are treated and discharged every day 
[14,20,24,26,43]. Mason et al. [14] estimated a discharge of 
4 million MPs/d from each facility and on average 13 bil-
lion MPs/d from all US WWTPs; Murphy et al. [24] assessed 
the discharged concentration to 65 million MPs/d from the 
facility under study; Magni et al. [26] measured 160 mil-
lion MPs/d; Blair et al. [39] appraised 22 million MPs/d.

Reported MP concentration of effluents came from 
various WWTPs with either secondary or tertiary level 
of treatment. The results depict a very wide range of 
0.005–131.0 particle/L. The three plants with recorded 
higher concentration are applying secondary treatment. 
However, there are also WWTPs that exhibit very low MP 
 concentrations after  biological treatment. There is no statis-
tically significant difference between secondary and tertiary 
effluent concentration in reviewed data (p = 0.12, derived 
from Mann Whitney U-test with 95% confidence level). 
Given the small amount of available data, it is obvious that 
more data are needed in order to draw reliable results.

Simon et al. [25] exhibit the highest concentration of 
131 particles/L, from secondary treatment, significantly 
higher than all other studies. Similarly, their results from 
tertiary treatment also show one of the highest effluent MP 
concentrations. They attributed this difference to smaller size 
particles that they were testing (10–500 µm). Other studies 
examined particles in the range of 20–500 µm, or bigger, up 
to 5 mm. Leslie et al. [18] also examined particles down to 
10 µm and their results appear to have the second-largest 
concentration in the table. However, there are numerous 
other parameters concerning the WWTPs that can justify this 
wide range of values. Different treatment technologies, dif-
ferent treated volumes, different sampled volumes, land uses 
in the region, population served, sampling frequency and 
random variation in time can contribute to large heteroge-
neity of data. The lowest concentration values are lower than 
0.5 particle/L. The lowest concentration (0.005 particle/L) was 
reported from Talvitie et al. [27] from the WWTP with ter-
tiary treatment utilizing MBR technology. There are also sec-
ondary effluents with lower than 0.5 particle/L [14,20,24,41] 
from WWTPs that utilize activated sludge or aeration in sec-
ondary treatment and either microscopy or FTIR methods of 
characterization.

The data are still sparse and the influence of several fac-
tors, including seasonal and daily fluctuation and stormwa-
ter contribution in MPs concentration are not clear. Reported 

studies collect data with single sampling events and do not 
provide continuous data sets. Lares et al. [42], who sample 
every two weeks for a three months period, reported vari-
ability on MPs concentration during sampling campaign. On 
the other hand, Conley et al. [44], whose sampling campaign 
take place over the course of a year, do not notice any recog-
nizable seasonal pattern across WWTPs.

Lee and Kim [33] found greater amounts of tire frag-
ments and they attributed this to surface runoff, since they 
conducted their research during rainy weather. The concen-
tration of other types of MPs appeared reduced, while pre-
cipitation increased, probably because of dilution.

5. Conclusions

MPs detection in wastewater treatment facilities com-
prises three main steps: wastewater sampling, pre-treat-
ment for particles extraction and particles’ quantification 
and characterization. Higher removal rates are achieved 
during primary treatment, grit and grease removal and pri-
mary sedimentation. It is documented that WWTPs retain 
more than 90% of inserted MPs; nonetheless, millions of 
tonnes of MPs can be discharged from an ordinary WWT 
facility every day.

There is not a clear correlation between effluent MP 
 concentration values and applied final level of wastewater 
treatment. Therefore, removal efficiency of different ter-
tiary treatment technologies should be more thoroughly 
examined.

The available data on WWTPs’ effluent concentration 
is extremely heterogeneous and difficult to be assessed. 
Moreover, a universal laboratory analysis protocol for MPs 
detection in wastewater must be developed, in order to 
achieve standardization in results’ assessment.

Finally, identification and assessment of fate, transport 
and removal of MPs from WWTPs is essential towards the 
containment and management of MPs in the environment. 
Towards this direction is also the detection and removal of 
MPs in the WWTPs sludge treatment procedures.
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