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a b s t r a c t
Slaughterhouse wastewater is difficult to treat due to a large amount of organic matter, blood, 
nutrients, and suspended solids. Therefore, in this study, a combination of aerobic treatment and 
nanofiltration was investigated as a hybrid process to remove contaminants from bovine and sheep 
slaughterhouse effluent. Treatment operation in the aerobic process was performed at three levels 
of sludge concentration (30, 50, and 70 mg/L), four levels of aeration rate (0.3, 0.4, 0.5, and 0.6 m3/h), 
and four levels of aeration time (2, 4, 6, and 8 h). The nanofiltration process was performed at three 
transmembrane pressure levels of 8, 12, and 16 bar and various filtration times. Findings indicated 
that aerobic treatment with 50 mg/L of sludge concentration, 0.5 m3/h aeration rate, and 4 h aer-
ation time reduced chemical oxygen demand (COD), total suspended solids (TSS), and total dis-
solved solids (TDS), by almost 95.4%, 15.3%, and 2.8%, respectively. The results also showed that 
increasing the filtration time caused the fouling phenomenon which decreased the permeate flux. 
Applying the filtration process led to more TDS, COD, and TSS reduction, by about 34%, 95%, and 
98.8%, by this process respectively. Consequently, at the end of the hybrid process, the amounts 
of TDS, COD, and TSS reached 6,290, 2.73, and 1.9 mg/L, respectively. These values imply that the 
treated wastewater complies with environmental standards.
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1. Introduction

Slaughterhouse wastewater has been classified as 
industrial waste in the agricultural and food industries 
[1]. Wastewaters from slaughterhouses and meat process-
ing industries were classified by Environmental Protection 
Agency (EPA) as one of the most environmentally harm-
ful wastes [1]. Non-automatic slaughterhouses consume 
much water due to the cleaning processes such as washing 

before and after animal slaughtering and cleaning floors 
and equipment [2–4].

The water consumption per slaughtered animal ranges 
from 1 to 3.8 m3 based on the type of animal, and the pro-
cesses employed in the slaughterhouse [5]. Most of this 
amount is discharged as wastewater, with volumes from 0.4 
to 3.1 m3 per slaughtered animal reported in the literature [5].

Effluents from the slaughterhouses of meat industries are 
heavily polluted and contain a high biodegradable organic 
material concentration. Therefore, the pollution capacity 
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of these industries is high [6]. The wastewater from a cat-
tle and sheep slaughterhouse is a mixture of the processing 
water from both the slaughtering and cleaning, which causes 
many changes in organic matter concentration. The main 
pollutant in slaughterhouse effluents is organic matter. The 
organic load contributors to these effluents are paunch, feces, 
fat and lard, grease, undigested food, blood, suspended 
material, urine, loose meat, soluble proteins, excrement, 
manure, grit, and colloidal particles [7,8].

Most of these industries discharge their effluents to 
sewer or watercourse. Untreated slaughterhouse wastewater 
entering into a municipal sewage treatment system may cre-
ate severe problems due to its very high biological oxygen 
demand (BOD) and chemical oxygen demand (COD) [9].

Several studies have described the common character-
istics of slaughterhouse wastewater (SWW) and reported 
that raw wastewater has BOD 834–16,680 mg/L, COD 
1,790–27,800 mg/L), pH 6.7 to 8, and electrical conductiv-
ity (EC) = 1.99–9.14 mS [10,11]. Discrete disposal of water 
effluent from the slaughterhouses is a significant source of 
pollution. This affluent, if not disposed of properly, then 
causes various health and environmental issues. Singh et al. 
[12] suggested that there should be a controlled system of 
liquid waste collection in the premises of a slaughterhouse. 
Wastewater is sometimes discharged into the environment 
without any treatment or with only a simple pre-treatment 
[13,14]. Discharging this wastewater into water bodies is 
one of the critical environmental issues for slaughterhouses 
[13–15]. The environmental issues of slaughterhouses due to 
poor management and planning could badly affect the health 
and environment. There should be a strict policy regarding 
environmental management by regulatory authorities for 
slaughterhouses [16]. To comply with water pollution con-
trol standards and to reduce the cost of sewer surcharges, 
these industries have to apply an adequate treatment of 
their effluents. Therefore, treating slaughterhouse waste-
water is very important for preventing high organic loading 
to municipal wastewater treatment plants. The most com-
mon methods used for treating slaughterhouse wastewaters 
are fine screening, sedimentation, coagulation–floccula-
tion, trickling filter, and activated sludge processes [17–20].

Ogbomida et al. [16] have suggested appropriate waste-
water treatment procedures for a slaughterhouse to prevent 
the contamination of the environment, including surface 
and groundwater. Cost-effective implementation of tech-
nology and management approaches, such as separation 
by screening (solids), protein recovery (blood separation), 
primary settling, etc. should be carried out to reduce the 
period of delayed degradation [16].

The conventional activated sludge process is widely used 
in treating municipal and industrial wastewater. However, 
this technique usually suffers failure in the sedimentation 
and thickening due to the excess growth of filamentous 
bacteria in sludge suspension [21]. To overcome this draw-
back and improve system performance, membrane filtra-
tion technology was introduced in biological wastewater 
treatment [22]. Today, membrane technology is widely used 
in many fields such as wastewater treatment due to its low 
energy requirements, easy scale-up, low space need, and 
proper separation. Thus, its use to treat slaughterhouse 
wastewater seems to be appropriate [23,24].

Although different treatment technologies have been 
applied for treating SWW, there are insufficient studies that 
examine nanofiltration and combined aerobic and mem-
brane systems for the treatment of SWW. The removal of 
BOD and COD was reported in some studies in the field 
of poultry slaughterhouse wastewater treatment in which 
ultrafiltration, nanofiltration, reverse osmosis, static granular 
bed reactor, and anaerobic membrane bioreactors (AnMBR) 
had been leveraged [25–30].

In our previous study [31], the treatment of slaughter-
house wastewater was evaluated by performing anaerobic 
and coagulation–flocculation methods as a hybrid process. 
The combined process means using a series of processes in 
which raw effluent enters the first process, then the output 
is used as feed for the next process, and the final output is 
the main product, during which the properties are mea-
sured, the effect is reported. Anaerobic treatment resulted 
in the reduction of the portion of COD. Coagulation–floc-
culation reduced most of the suspended and colloidal par-
ticles, and aluminum sulfate was a suitable coagulant for 
this purpose. However, adding coagulants introduced 
various ions, caused an increase in total dissolved solids 
(TDS). The anaerobic and coagulation–flocculation hybrid 
process did not meet the COD and total suspended solids 
(TSS) standards for the disposal of wastewater, and thus a 
supplementary treatment process is required. The approved 
wastewater treatment standards for different pollution indi-
ces of BOD, COD, total nitrogen (TN), total phosphorus 
(TP), TSS, and pH in Iran are 50–100 mg/L, 100–200 mg/L, 
10–20 mg/L, 1–2 mg/L, 40–100 mg/L, and 6–9, respectively 
[32].Thus, the present study investigates the combined 
application of aerobic treatment and nanofiltration as a com-
bined process for treating the initially treated wastewater 
to achieve reclamation standards.

2. Materials and methods

2.1. Materials

The wastewater used in this experimental work was col-
lected from a bovine and sheep slaughterhouse located in 
Quchan, Iran, and was labeled as raw wastewater. The pollu-
tion indices values of the wastewater, which the coagulation–
flocculation and anaerobic hybrid process has previously 
treated, are TSS = 190 mg/L, COD = 1,295 mg/L, pH = 6.8, 
and TDS = 9,840 mg/L [31].

The aerobic sludge for initial seeding was obtained 
from the final clarifier of the wastewater treatment plant of 
Quchan. The aerobic sludge for initial seeding was obtained 
from the final clarifier of the wastewater treatment plant of 
Quchan. The sludge contains various aerobic microorgan-
isms with 100 mg/L of (TSS) and 50 mg/L of volatile sus-
pended solids. These activated microorganisms were accus-
tomed to environmental and operational conditions.

The membrane was a UTC-70UB flat-sheet membrane 
made by Toray Company Located in Tokyo, Japan, with an 
effective surface area of 98.5 cm2 in the module. This mem-
brane consists of three layers: (a) 0.3 µm polyamide as the 
dense layer, (b) 45 µm polysulfone as the support layer, 
and (c) 100 µm polyester as the base layer. The molecular 
weight cut-off of the membrane is 200 Da.
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2.2. Aerobic activated sludge and membrane filtration pilot plant

The pilot plant consists of an aeration tank equipped 
with a mixer, an air compressor, a sedimentation tank, an 
intermediate tank for membrane filtration, a membrane cell, 
two pumps, a flow meter, a pressure gauge, and some flow 
regulating valves as assembled as shown in Fig. 1.

The effluent was first treated through sedimentation, 
anaerobic treatment, and coagulation–flocculation pro-
cesses. Then, it poured into the aerobic process aeration tank 
as feed for the present experimental study [31]. In this study, 
an aerobic activated sludge system was used. The effluent 
from the activated sludge process entered an intermediate 
tank for holding and subsequent use in the nanofiltration 
process.

3. Experimental procedure

First, experiments were performed on three levels of 
sludge concentration, four levels of aeration time, and a 
fixed aeration rate. After determining the best aeration time 
and sludge concentration, experiments were performed to 
determine the appropriate aeration rate. Then, the effluent 
which had been treated under the optimal sludge concentra-
tion, aeration rate, and aeration time was used as feed for 
the membrane process. The output of the aerobic process 
entered the sedimentation tank and then the intermediate 
tank for nanofiltration operation. The filtration process was 
performed for 4 h at three levels of transmembrane pres-
sure (TMP) including 8, 12, and 16 bar, and sampling was 
performed every hour. After each step of the experiment, the 
following characteristics of treated wastewater were mea-
sured: pH (Metrohm 80027 pH meter, Switzerland), COD 
(Aqualytic AL800 spectrophotometer, Germany), TSS (using 

a conventional analytical method), and TDS (Jenway 407 
conductivity meter, Germany). The analyses for pH, COD, 
TDS, and TSS were performed using the standard proce-
dures of examining water and wastewater [33].

4. Results and discussion

4.1. Aerobic process

As the first step in the aerobic process, experiments 
were performed at a constant aeration rate for three levels 
of sludge concentration and four levels of aeration time. The 
results of this step are shown in Figs. 2 and 3. In this pro-
cess, microorganisms are the leading cause of the decompo-
sition reactions of organic matter, and the energy obtained 
from this metabolism is used to survive in their biological 
functions [13]. According to Figs. 2 and 3, the removal of 
the desired values of TDS, TSS, and COD was obtained at 
a sludge concentration of 50 mg/L and aeration time of 4 h. 
In the next step in the aerobic process, experiments were 
performed at a fixed aeration time for three levels of sludge 
concentration and four aeration rate levels.

As shown in Figs. 4 and 5, with the changes in aera-
tion rate over a fixed 4 h aeration time, the values of TDS, 
TSS, and COD were first decreased and then did not 
change much as the aeration rate increased. Therefore, 
the optimal aeration rate of 0.5 m3/h was selected. These 
results show that an adequate amount of active microor-
ganisms and sufficient oxygen concentration in the aera-
tion tank can quickly reduce organic matter. The results 
showed that the aerobic process could reduce TDS from 
9,840 to 9,559 mg/L, TSS from 190 to 161 mg/L, and COD 
from 1,295 to 60 mg/L in wastewater; which is equivalent to 
a reduction of about 2.8%, 15.3%, and 95.4%, respectively. 

Fig. 1. Schematic diagram of the aerobic and membrane hybrid process.
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Liu et al. [4] were investigated the formation and charac-
teristics of aerobic granular sludge for biological nutrient 
removal of slaughterhouse wastewater in a sequencing 
batch bioreactor. Their experimental results showed that 
the removal efficiency of COD reached 95.1%.

4.2. Membrane filtration process

Since in the previous study, the coagulation process 
was used, adding the coagulant increased the wastewater 
TDS [31]. Therefore, the use of the nanofiltration process 
for wastewater treatment is more logical. The results of 
nanofiltration experiments considering the changes in the 
two parameters of TMP and filtration time at three levels 
of TMP and the four levels of filtration time are shown in 
Figs. 6 and 7. With increasing TMP, the water transfer rate 
is higher than other wastewater components, so TDS, COD, 

and TSS values are reduced. However, according to Fig. 8, 
the flux increased due to the increased driving force of the 
process. Increasing the filtration time led to membrane foul-
ing; therefore, the flux and the values of TDS, COD, and 
TSS of the permeate were decreased.

Applying the nanofiltration process reduced TDS, 
TSS, and COD to 6,290, 1.9, and 2.73 mg/L, equivalent to a 
reduction of about 34%, 98.8%, and 95%, respectively. These 
results show that the wastewater treated using the com-
bined process complies with environmental standards for 
its discharge.

In this regard, Jensen et al. [34] could achieve over 
95% COD removal from the Australian cattle slaughter-
houses wastewater using an AnMBR. Likewise, Gürel and 
Büyükgüngör [5] used a membrane bioreactor to remove 
organic substances and nutrients from slaughterhouse plant 
wastewater. They obtained the removal efficiencies of 97%, 
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96%, 65%, and 44% for COD, total organic carbon, TP, and 
TN, respectively. These studies confirm that the obtained 
results are consistent with the literature on membrane pro-
cesses in wastewater treatment.

5. Conclusion

In this study, the aerobic and nanofiltration hybrid pro-
cess was explored on the pilot-scale to remove contaminants 
from a slaughterhouse effluent. The results showed that 
TDS, COD, and TSS values were reduced by almost 2.8%, 
95.4%, and 15.3% at the best treatment condition using the 
aerobic process, respectively.

Moreover, the nanofiltration of wastewater led to the 
production of clear wastewater. Increasing TMP caused more 
water molecules to pass through the membrane than other 
components, so TSS and COD were reduced significantly at 
the end of filtration. Finally, at the best treatment condition 
using the hybrid process, the values of COD, TDS, and TSS 

were reduced by about 99.8%, 36%, and 99%, respectively. 
These results show that the treated wastewater complies 
with environmental standards.
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