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a b s t r a c t
The recycling and utilization of the solid precipitate produced by the treatment of the chlorine- 
containing desulfurization circulating wastewater using ultra-high lime with the aluminum pro-
cess were studied. By means of X-ray diffraction, Fourier-transform infrared, scanning electron 
microscopy and volumetric adsorption analyzer, it was proved that the main composition of 
the precipitation was the chlorinated Ca-Al layered double hydroxide (CaAl-LDH-Cl). This pre-
cipitation was named waste-CaAl-LDH-Cl in this paper. It was used as an adsorbent to remove 
Congo red (CR). The research showed that waste-CaAl-LDH-Cl is an effective adsorbent for the 
removal of CR dye from the aqueous solutions. Adsorption of CR was found to increase with the 
increase of contact time, initial dye concentration and solution temperature. The adsorption of CR 
on waste-CaAl-LDH-Cl was favored at an acidic medium. The adsorption kinetics followed the 
pseudo-second- order model, whereas Langmuir adsorption isotherm fitted better to obtained data. 
The highest adsorption of 123.9 mg/g was recorded at 90 min and 313 K. ΔG° = –2.6757, –6.8761 
and –12.7107 kJ/mol, ΔH° = 301.1145 kJ/mol, these data suggested that the adsorption process 
was spontaneous and endothermic. The adsorption mechanism included the electrostatic inter-
action, hydrogen bond and surface complexation. The results suggested that waste-CaAl-LDH-Cl 
is an efficient material for the removal of anionic organic pollutants from the wastewater.
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1. Introduction

Chloride ion is a typical corrosive ion, which destroys 
the metal passive film corrode metal pipes and other equip-
ment after reaction with dissolved oxygen in water [1].  
In addition, a high concentration of chloride ions also 
affects the quality of gypsum, the durability and quality 
of concrete, and even damages buildings. Besides, chloride 
ios have toxic effects on plant growth and can also severely 
pollute groundwater and drinking water [2]. Chloride ion 
is easily soluble in water but difficult to remove, there-
fore, it exists in high content in industrial wastewaters, 

such as wet flue gas desulfurization and denitrification 
wastewater [3], cooling circulating water [4], pickling 
wastewater and others [5].

The high concentration of chloride ions in some waste-
waters will inhibit the growth of microorganisms, so these 
wastewaters cannot be direct. Currently, chlorine ion 
removal technologies mainly include chemical precipita-
tion technology [6], ion exchange method [7], electrochem-
ical technology [8,9], and other technologies [10]. Among 
them, the chemical precipitation method is suitable for 
the treatment of wastewaters with high concentrations of 
chloride, while ion exchange technology, electrochemical 
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technology, membrane method and adsorption method are 
generally only applicable to wastewaters with low concen-
trations. In the chemical precipitation method, the ultra-
high lime with the aluminum process is considered to be 
an economical and effective chloride removal technology. 
This treatment method is based on the addition of excess, 
which is to add excess calcium salt and aluminum salt into 
the solution to react with chloride ions. Under a certain 
reaction temperature and stirring speed, the precipitate 
of calcium aluminum layered double hydroxides (CaAl-
LDH-Cl) is formed, which finally realizes the effective 
removal of chloride ions [11,12]. At present, there is much 
research on the treatment of high chloride wastewaters 
by ultra-high lime with the aluminum process. Fang et 
al. [3] carried out the research on the removal of chloride 
ions from the wet flue gas desulfurization and denitrifica-
tion wastewater using Friedel’s salt precipitation method. 
The two-stage Friedel’s salt precipitation method was 
used to remove sulfate ion and chloride ion respectively, 
with the removal percentage of 98% and 85%, and it has 
a synergistic effect on other anions and heavy metal ions. 
Abdel-Wahab and Batchelor [13] explored the effects of 
pH value, temperature and reagent dosage on the chloride 
ion removal efficiency of the process treating recirculated 
cooling water. The results showed the optimum pH value 
is 12 ± 0.2, the reaction temperature should not exceed 
40°C, and the optimum molar ratio of Ca2+ and Al3+ is 2.5.

The layered double hydroxide (LDH) is a versatile class 
of ionic clay consisting of the main layer with a positive 
charge and an intermediate layer with a negative charge. 
It has a general formula expressed as [M2+

1–xMx
3+(OH)2]x+ 

(An–)x/n·mH2O where M2+ represents the divalent metal cat-
ions such as Ni2+, Cu2+, and so forth, M3+ represents the 
trivalent metal cations such as Mn3+ and Al3+, An– is the 
anion, and X is the molar ratio of the trivalent metal ion 
to total metal ions. LDH is favorable adsorbent material 
because of its excellent physical and textural characteris-
tics [14,15]. Previous studies have also proved this point. 
Dao et al. [16] synthesized Ni-Fe LDH by hydrothermal 
method and the study showed that the Congo red (CR) 
removal capacity reached a maximum value of 244.87 mg/g 
at a concentration of 136.63 mg/L, pH of 5.94 and reaction 
time 233.84 min. Lafi et al. [17] synthesized Mg-Al LDH 
by co-precipitation method and the CR removal capacity 
reached a maximum value of 111.11 mg/g. Tolonen et al. 
[18] researched that the removal of sulfate from mine water 
by precipitation as ettringite (CaAl-SO4-LDH) and the uti-
lization of the precipitate as a sorbent for arsenate removal 
(qm = 11.2 ± 4.7 mg/g). Wu et al. [19] studied the removal 
of phosphate using ettringite synthesized from indus-
trial by-products. The removal capacity (qe) for phosphate 
removal fluctuated in the range from 160 to 211 mg/g.

As mentioned above, both LDH synthesized by chem-
ical method and ettringite synthesized from industrial 
by-products have related studies, but the treatment and 
disposal of waste calcium aluminum layered double 
hydroxides (waste-CaAl-LDH-Cl) produced from the 
desulfurization circulating wastewater (DCW) has not 
been reported. Therefore, this paper focuses on the recy-
cling and utilization of waste-CaAl-LDH-Cl as an adsor-
bent of CR. Firstly, the waste-CaAl-LDH-Cl was obtained 

by the ultra-high lime with aluminum method from DCW. 
Secondly, the performance and mechanism of waste-
CaAl-LDH-Cl as an adsorbent to adsorb CR were studied.

2. Materials and methods

2.1. Materials

All chemical reagents are analytically pure and directly 
used without any further purification. Ca(OH)2, NaAlO2 
and CR were used in the experiments. The actual wastewa-
ter (the wet flue gas desulfurization circulating wastewater, 
DCW) was obtained from a power plant located in Henan 
Province, China. The wastewater quality parameters are 
shown in Table 1.

2.2. Preparation of waste-CaAl-LDH-Cl

The waste-CaAl-LDH-Cl was prepared by using the two-
stage ultra-high lime with the aluminum process to treat the 
DCW. In the first stage, SO4

2− was removed. The conditions are 
as follows: the molar ratio of Ca(OH)2:NaAlO2:SO4

2– = 4:1:1, 
T = 27°C, t = 17 min, the stirring speed was 200 rpm, 
and the pH value remains unchanged. In the second 
stage, chloride ion was removed, with the molar ratio of 
Ca(OH)2:NaAlO2:Cl– = 6:3:1, T < 40°C, t = 30 min, r = 300 rpm. 
The solid precipitation from the second stage was waste-
CaAl-LDH-Cl that was collected, dried in a muffle furnace, 
ground and sieved through 100 mesh.

2.3. Congo red

Congo red (CR) is commonly used in the textile indus-
try to give wool and silk red color with yellow fluores-
cence. The effluent containing CR is largely produced from 
textiles, printing, dyeing, paper and plastic industries, etc. 
Due to its good water-solubility and stability, CR is diffi-
cult to be degraded, causing potential harm to animals, 
plants, the human body and the environment. Therefore, it 
is important to remove CR from wastewater. Table 2 shows 
the characteristics of CR. The CR solution was prepared just 
before use.

2.4. Analytical methods

The waste-CaAl-LDH-Cl was characterized by scan-
ning electron microscopy (SEM), X-ray diffraction (XRD), 
Fourier-transform infrared (FTIR) and volumetric adsorp-
tion analyzer. The SEM (JSM-6701F, Japan) was obtained 
at the voltage of 5 kV. The XRD (D/MAX-2400X, Japan) 
patterns were obtained with a diffractometer (4 kV, 100 mA), 
a scan range from 2° to 80° and a scan rate of 2°/min–1. The 
FTIR spectra (Nicolet NEXQS670, USA) were measured on 
a spectrometer in the range of 4,000–400 cm. The specific 
surface area and the total pore volume were determined 
using a volumetric adsorption analyzer (Micromeritics 
ASAP 2020, USA). The specific surface area and pore size of 
the waste-CaAl-LDH-Cl were calculated by the Brunauer–
Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) 
method, respectively. Furthermore, the chloride concentra-
tion was determined by gel electrode (JENSPRIMA innoCon 
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601, China) and the calcium concentration was determined 
by ethylenediamine tetraacetic acid titration.

2.5. Adsorption experiments

The waste-CaAl-LDH-Cl was used as an adsorbent to 
treat CR dye. The effects of initial CR concentration, con-
tact time, solution temperature and solution pH on the 
CR uptake were investigated. All the batch experiments 
were carried out in a 250 mL flask. The waste-CaAl-LDH-
Cl (0.4 g/L) was added to the CR solution and shaken 
for 90 min to achieve the adsorption equilibrium. After 
equilibrium, the samples were centrifuged at 6,000 rpm 
for 10 min, then the CR concentration in the supernatant 
was determined by a UV-Vis spectrophotometer (UV-5200, 
China) at the wavelength of 498nm. All experiments were 
carried out in three parallel experiments. The adsorption 
capacity of the adsorbent and the percentage of removal 
CR were calculated by Eqs. (1) and (2), respectively:

q
c c V

mt
t=

−( ) ×0  (1)

R
c c
c

e=
−

×0

0

100% (2)

where qt is the adsorption capacity (mg/g) at any time, R is 
CR removal percentage (%), c0 is the initial CR concentra-
tion (mg/L), ct is the CR concentration at any time, ce is the 
equilibrium concentration of CR, m is adsorbent mass (g) 
and V is the volume of the CR solution (L).

2.5.1. Effect of contact time and CR initial concentration

In order to study the effect of contact time and initial 
dye concentration on the CR uptake. The experimental 
conditions were as follows: C(CR) = 30, 40 and 50 mg/L, 
m(waste-CaAl-LDH-Cl) = 0.4 g/L, V = 100 mL, t = 90 min, 
T = 303 K, r = 200 rpm. In this case, the solution pH was 
kept original without any pH adjustment. Among them, 
C, m, V, t, T and r are the initial concentration of CR, the 
dosage of adsorbent, the volume of solution, the reac-
tion time, temperature and the rotation speed of shaker, 
respectively.

2.5.2. Effect of solution temperature on CR adsorption

The effect of solution temperature on the CR adsorp-
tion process was examined by varying the adsorption 
temperature by adjusting the temperature of the gas 
bath shaker (Model THZ-82A, China). The experimen-
tal conditions were as follows: T = 303, 308 and 313 K, 
C(CR) = 50 mg/L, m(waste-CaAl-LDH-Cl) = 0.4 g/L, 
V = 100 mL, t = 90 min, r = 200 rpm. The solution pH was 
kept original without any pH adjustment.

2.5.3. Effect of solution pH on CR adsorption

The effect of solution pH on the CR adsorption pro-
cess was studied by varying the initial pH of the solution. 
The initial pH of the CR solution was 7.91. The pH was 
adjusted using 0.1 M HNO3 (HCl can affect the deter-
mination of Cl–) and 0.1 M NaOH and was measured 
using a pH meter (Model PHS-3C, China). The exper-
imental conditions were as follows: pH = 4, 6, 10 and 
12, C(CR) = 50 mg/L, m(waste-CaAl-LDH-Cl) = 0.4 g/L, 
V = 100 mL, t = 90 min, T = 303 K, r = 200 rpm.

3. Results and discussion

3.1. Characterization

The BET surface area and pore characteristics were 
calculated according to the N2 adsorption–desorption iso-
therm and pore size distribution of the waste-CaAl-LDH-Cl 
(Fig. 2a). The waste-CaAl-LDH-Cl had a surface area of 

Table 1
Wastewater quality parameters

Index Desulfurization circulating 
wastewater (mg/L)

Chemical oxygen demand 666.4
SO4

2– 2,104
Cl– 1,565
pH 8.3

Table 2
Characteristics of Congo red

Molecular formula C32H22N6Na2O6S2

Molecular weight (g/mol) 696.67
λmax (nm) 498
Chemical class Anionic
Chemical structure Fig. 1
C.I. number 22120
C.I. name Direct red 28

Fig. 1. Chemical structure of CR dye.
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13.95 m2/g, a total pore volume of 0.0235 cm3/g, and an aver-
age pore diameter of 6.74 nm. Therefore, the above anal-
yses resulted that waste-CaAl-LDH-Cl obtained from the 
DCW by ultra-high lime with the aluminum process was a 
mesoporous material. As a result, the waste-CaAl-LDH-Cl 
was completely feasible to be used as an adsorbent.

The crystal structures of the materials were charac-
terized by XRD. From Fig. 2b, the XRD pattern of waste-
CaAl-LDH-Cl showed characteristic diffraction peaks of 
hydrotalcite at (0 0 2), (0 13), (–113) and (–311) (JCPDS 
78-1219), indicating the typical hydrotalcite structure [20]. 
And the characteristic peak (001) represented calcium 
hydroxide (JCPDS 44-1481). It is proved that the precipitate 
is a mixture with CaAl-LDH-Cl as the main component. 
The d spacing value (d002) of pristine waste-CaAl-LDH-Cl 
was calculated to be 7.853 Å by Jade 6.5.

The FTIR spectrums of waste-CaAl-LDH-Cl are pre-
sented in Fig. 2c. The information of wavenumber and 
the corresponding functional group is shown in the 

figure [20,21]. The result illustrated that the FTIR spectrum 
of the waste-CaAl-LDH-Cl was a typical spectrum of lay-
ered double hydroxides [22]. It should be noticed that the 
waste-CaAl-LDH-Cl had a weak characteristic peak of SO4

2– 
at 1,118 cm–1 [23], which was due to the incomplete removal 
of SO4

2– in the DCW in the first stage by the ultra-high lime 
with the aluminum process.

The SEM of waste-CaAl-LDH-Cl is shown in Fig. 2d. 
The waste-CaAl-LDH-Cl microphotography revealed that 
was a layered crystal with a smooth surface, which was 
consistent with the typical layered double hydroxides [24,25].

3.2. Effect of contact time and CR initial concentration

Fig. 3 shows the effect of contact time and initial dye 
concentration of the CR uptake on the waste-CaAl-LDH-Cl 
at 303 K. It could be seen that the adsorption of CR is rapid 
at the initial stage of the contract period, but it gradually 
reached equilibrium after 60 min. This is due to the high 
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Fig. 2. (a) N2 adsorption–desorption isotherms and pore size distribution curve, (b) XRD pattern, (c) FTIR spectrum and 
(d) SEM morphologies of waste-CaAl-LDH-Cl.
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concentration of CR and more adsorption sites in the ini-
tial stage of adsorption, which leads to the high adsorption 
driving force and the rapid increase of adsorption capacity.

3.3. Effect of solution temperature on CR adsorption

Fig. 4 shows the effects of temperature on the CR 
adsorption uptake for various initial dye concentrations. 
The CR adsorption uptakes were found to increase with the 
increase in solution temperature from 303 to 313 K for all 
initial concentrations. The results indicated that the adsorp-
tion reaction of CR adsorbed by waste-CaAl-LDH-Cl is an 
endothermic process.

3.4. Effect of solution pH on CR adsorption

Fig. 5 shows the effect of solution pH on the CR 
removal at initial pH values of 4, 6, 10, 12 and original pH. 
As shown in Fig. 5, the acid condition was favorable for 
CR removal and the removal percentage was above 98%. 
This can be attributed to the surface of the CaAl-LDH-Cl 
is protonated and positively charged at acid conditions. 
The electrostatic attraction between the adsorbent and 
the anionic dye increases. When pH is not adjusted, the 
removal percentage of CR is 96.32%. At pH 10 and 12, 
the removal efficiency of CR decreased sharply, and the 
removal percentage of CR is 93.16% and 80.88%, sepa-
rately. A similar observation was obtained by Fernando 
Pereira de Sá [26]. In addition, Fig. 5 shows that the waste-
CaAl-LDH-Cl has a wide range of pH(4~10) adaptation 
as an adsorbent, which makes it have a wide range of 
application prospects. The pH of natural water or waste-
water is usually around 6–9 [27], thus there is no need to 
adjust the solution pH in view of practical application. 
Therefore, there is no need to adjust pH in this experiment.

The results of the adsorption of CR onto the waste-
CaAl-LDH-Cl under different initial pH conditions are 
reported in Table 3. It would appear that the concentration 
of Cl– and Ca2+ in the effluent after adsorption treatment 
meet the requirements for the reuse of Cl– (<250 mg/L) 

and Ca2+ (<180 mg/L) in the reuse of urban recycling 
water-water quality standard for industrial uses (GBT 
19923-2005). The Ca2+ is more in acid condition, likely due 
to the reaction of Ca(OH)2 of waste-CaAl-LDH-Cl and 
HNO3 to release more Ca2+.

3.5. Adsorption kinetics

By fitting the data of Fig. 3, the fitting plots of the pseudo- 
first-order kinetic model and pseudo-second-order kinetic 
model were obtained, as shown in Fig. 6, and the fitting 
data are shown in Table 4.

In this experiment, kinetic models including the pseudo- 
first-order equation [Eq. (3)] and pseudo-second-order 
equation [Eq. (4)] were mentioned [28].

ln ln ,q q q k te t e−( ) = −cal 1  (3)

t
q k q

t
qt e e

= +
1

2
2
, ,cal cal

 (4)
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where qe and qt are equilibrium adsorption capacity (mg/g) 
and adsorption capacity at a given time t, respectively. 
qe can be obtained in Fig. 3, which is the adsorption capac-
ity at t = 90 min. qe,cal denotes the calculated adsorption 
capacity (mg/g). k1 and k2 are the pseudo-first-order and 
pseudo- second-order rate constants, respectively. The lin-
ear plot of ln(qe – qt) vs. t gave a slope of k1 and intercept 
of lnqe,cal (Fig. 6a). The linear plot of t/qt vs. t gave 1/qe,cal as 
the slope and 1/(k2q2

e,cal) as the intercept (Fig. 6b).
According to Fig. 6 and Table 4, it could be seen that 

the kinetic data of CR adsorption by waste-CaAl-LDH-Cl 

had a better correlation with the pseudo-second-order 
model (R2 > 0.999, Smaller RMSE). In addition, the qe,cal 
values calculated by the pseudo-second-order model were 
very close to the experimental values qe,exp. Therefore, the 
adsorption of CR on waste-CaAl-LDH-Cl fitted well to 
the pseudo-second-order model. As shown in Table 4, the 
second- order rate constant changes almost an order of 
magnitude when the initial concentration changes from 
30 to 40 mg/L. This illustrated that the adsorption reaction 
rate at 30 mg/L was faster than that at 40 mg/L, which was 
consistent with the adsorption equilibrium time in Fig. 3.  

Table 3
Results of the adsorption of CR onto the LDH under different initial pH condition

pHexpected pHinitial pHequilibrium CR removal (%) qe Cl– Ca2+

4 3.97 9.27 100 125 36.66 35.27
6 5.92 10 98.72 123.4 43.33 29.39
pHoriginal 7.91 10.2 96.32 120.41 39.67 20.57
10 10.36 10.73 93.16 116.44 36.67 19.24
12 11.83 11.77 80.88 101.11 34 18.3

Table 4
Pseudo-first-order and pseudo-second-order kinetic model parameters for adsorption of CR

c0 (mg/L) qe,exp (mg/g) Pseudo-first-order model Pseudo-second-order model

qe1,cal k1 R2
adj RMSE (%) qe2,cal k2 R2

adj RMSE (%)

30 74.693 5.226 0.065 0.8809 62.14 75.131 0.028 0.9999 0.22
40 94.858 73.943 0.099 0.9802 37.05 99.01 0.003 0.9993 0.77
50 102.425 30.578 0.07 0.9661 34.23 104.603 0.005 0.9999 0.24

Note: The qe,exp is experimental equilibrium adsorption capacity. The qe,cal is theoretical equilibrium adsorption capacity. The RMSE is 
the root mean squared error, which measured the differences of qe,exp and qe,cal. The smaller the RMSE, the better the model fitting.
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This kind of phenomenon of data also appears in the 
research of Ahmad & Rahman [29] and Hameed et al. [30].

3.6. Diffusion mechanism

The kinetic results were further analyzed by using 
the intraparticle diffusion model by using the following 
equation [29].

q k t ct i= +pi
1 2/

 (5)

where kpi is the rate constant of stage i, is obtained from 
the slope of the straight line of qt vs. t1/2. ci is the inter-
cept, which represents the influence of the interface layer. 
The rate-limiting process is only due to the intraparticle 
diffusion if the plot passes through the origin. Otherwise, 
some other mechanism along with intraparticle diffusion 
is also involved

According to Fig. 7 and Table 5, it could be seen that 
the intraparticle diffusion line was divided into two seg-
ments without passing the origin over the all-time range. 
The results indicate that more than one process affected the 
adsorption [30].

3.7. Adsorption isotherms

Langmuir and Freundlich’s models were used to describe 
adsorption isotherms. The linear form of Langmuir and 
Freundlich isotherm equations are given as Eqs. (6) and (7), 
respectively [31].

c
q

c
q q K

e

e

e

m m L

= +
1  (6)

where ce (mg/L) is the equilibrium concentration of the 
CR. qm and qe (mg/g) are the maximum adsorption capac-
ity and equilibrium adsorption capacity, respectively; 
KL is the Langmuir constant; A straight line with slope of 

1/qm and intercept of 1/(qmKL) was obtained when ce/qe is 
plotted against ce (Fig. 8a).

ln ln lnq K
n

ce F e= +
1

 (7)

where KF is the Freundlich constant; n is the Freundlich 
adsorption index. The plot of lnqe vs. lnce gave a straight 
line with a slope of 1/n and an intercept of lnKF (Fig. 8b). 
n > 1 indicates that the adsorbate is favorable for adsorp-
tion on the adsorbent, and the adsorption is a physical 
process, while n < 1 illustrates that the adsorption is a 
chemical process [31].

Fig. 8a and b present plots of adsorption linearized 
isotherms of the Langmuir and Freundlich model, respec-
tively. Table 6 is the linearized isotherm parameters at 
different temperatures. Fig. 8a and Table 6 show a good 
agreement between the experimental and the calculated 
qm values, all the R2 values obtained from the Langmuir 
model were higher (R2 > 0.98) and all RMSE values were 
smaller, indicating that the adsorption of CR on waste-
CaAl-LDH-Cl fitted well to Langmuir model. Therefore, 
the maximum adsorption capacity of CR on waste-CaAl-
LDH-Cl is 123.9 mg/g at 313 K. Tables 7 and 8 show the 
adsorption capacities of reported other adsorbents made 
from waste and layered double hydroxide materials for 
CR, respectively. As shown in Tables 7 and 8, 123.9 mg/g 
is at the medium level, generally higher than the unmod-
ified adsorbent and lower than the modified adsorbent. 
It is concluded that the waste-CaAl-LDH-Cl is an easily 
available and effective adsorbent.

3.8. Thermodynamic analyses

Thermodynamic parameters provide in-depth informa-
tion about adsorption including energy change and reac-
tion type. Therefore, standard free energy (ΔG°), standard 
enthalpy(ΔH°) and standard entropy (ΔS°) were calculated 
and analyzed. The value of ΔG°, ΔH° and ΔS° could be 
obtained from the following equation [29,43,44]:

∆G RT kL° = − ln  (8)
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Fig. 7. The plot of the intraparticle diffusion model for the 
adsorption of CR on waste-CaAl-LDH-Cl.

Table 5
Intraparticle diffusion model constants for adsorption of CR

Model Constants c0 (mg/L)

30 40 50

Intraparticle 
diffusion model

kp1 8.297 6.312 3.851
kp2 0.201 0.168 0.143
c1 45.449 53.395 75.921
c2 72.935 93.316 101.020
R1

2 – 0.9959 0.9087
R2

2 0.7607 0.8750 0.4496
RMSE1 (%) – 60.32 209.78
RMSE2 (%) 21.87 5.95 9.99

Note: kp1, c1, R1
2 and RMSE1 are the parameters of region I. 

kp2, c2, R2
2 and RMSE2 are the parameters of region II.
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ln k S
R

H
RTL =

°
−

°∆ ∆  (9)

where R (8.314 J/mol K) is the gas constant; T (K) is the abso-
lute solution temperature and kL (l/mg) is the Langmuir 
isotherm constant; The values of ΔH° and ΔS° can be calcu-
lated, respectively from the slope and intercept of lnkL vs. 
1/T plot (Fig. 9).

The calculated values of ΔG°, ΔH° and ΔS° for 
adsorption of CR on waste-CaAl-LDH-Cl are shown in 
Table 9. At all temperatures, ΔG° values were negative 
and decreased as temperature increased, indicating that 
the adsorption of CR on waste-CaAl-LDH-Cl was spon-
taneous and the higher temperature was favorable to 
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Fig. 8. The plot of Langmuir linearized isotherm (a) and plot of Freundlich linearized isotherm (b). Conditions: C(CR) = 30, 35, 40, 45 
and 50 mg/L, m(waste-CaAl-LDH-Cl) = 0.4 g/L, V = 100 mL, t = 90 min, T = 303, 308, and 313 K, r = 200 rpm. The pH did not change.

Table 8
Adsorption capacities of CR on the waste-CaAl-LDH-Cl and 
other layered double hydroxide materials

Adsorbent qmax (mg/g) References

CaAl-NO3-LDH 59.416 [37]
CaAl-Cl-LDH 72.569 [38]
MgFe-CO3-LDH 104.60 [39]
MgAl-Cl-LDH 111.11 [17]
Waste-CaAl-LDH-Cl 123.9 This study
NiFe-Cl-LDH 244.87 [16]
NiFe-LDH/NiFe-LDO 205/330 [40]
ZnAl-CO3-LDH/ZnAl-CO3-MW 210.08/462.96 [41]
Fe3O4@MgAl-LDH 813 [42]

Note: MW is microwave.

Table 6
Linearized isotherm parameters of Langmuir and Freundlich model for adsorption of CR on waste-CaAl-LDH-Cl

Temperature (K) qm,exp (mg/g)

Langmuir Freundlich

qm kL R2 RMSE (%) KF n R2 RMSE (%)

303 103.76 103.1992 2.8925 0.9890 0.356 81.1582 11.0473 0.8937 4.137
308 115.67 115.7407 14.6615 0.9968 0.0834 104.1883 14.9948 0.9599 2.399
313 122.98 123.9157 132.2192 0.9994 0.0082 122.7758 25.4647 0.9667 1.892

Note: The qm,exp is the experimental maximum adsorption capacity. The RMSE is the root mean squared error, which measured the 
differences of qe,exp and qe,cal. The smaller the RMSE, the better the model fitting.

Table 7
Adsorption capacities of CR on the waste-CaAl-LDH-Cl and 
other adsorbents made form waste

Adsorbent qmax (mg/g) References

Wheat bran/rice bran 22.73/14.63 [32]
Ball-milled sugarcane bagasse 38.2 [33]
Waste-CaAl-LDH-Cl 123.9 This study
Hydrogel made from bleached 

pineapple peel
138.89 [34]

Tomato processing waste-AC 435 [35]
Coir pith-AC 500 [36]

Note: AC is activated carbon.
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the adsorption. The positive ΔH value indicated that the 
adsorption reaction was an endothermic process. Moreover, 
the positive ΔS° indicated the randomness at the solid-solu-
tion interface was increasing, which proved the affinity of 
the adsorbent for adsorbate was greater.

Physisorption and chemisorption can be classified 
according to ΔH°. The energy (ΔH°) for chemisorption 
ranges from 80 to 450 kJ/mol, whereas the ΔH° values for 
the physical forces are as follows: van der Waals forces 
(4–10 kJ/mol), H-bonding (2–40 kJ/mol) and electrostatic 
interactions (20–80 kJ/mol) [45]. Based on the above reports 
and the data of ΔH° = 301.1145 kJ/mol in Table 9, which 
indicated that the adsorption of CR on waste-CaAl-LDH-Cl 
was mainly the chemisorption process.

Generally, ΔG° values for chemisorption are in the range 
–20–0 kJ/mol, and those for physisorption range between 
–80 and –400 kJ/mol [27]. In this study, the ΔG° values for 
CR on all temperatures were in the range of –20–0 kJ/mol, 
revealing that adsorption was chemisorption.

3.9. Mechanisms of CR adsorption onto waste-CaAl-LDH-Cl

For further probe, the molecular interaction of CR with 
the adsorbents, XRD diffraction patterns, FTIR spectra and 
SEM morphologies of waste-CaAl-LDH-Cl before and after 
CR adsorption are compared in Fig. 10.

In Fig. 10a, the main characteristic peaks of the layered 
double hydroxides such as (002), (013), (–113) and (–311) 
gradually decreased and disappeared after adsorption 30 
and 50 mg/L CR, and the d spacing value (d002) of pristine 
waste-CaAl-LDH-Cl did not change, indicating that CR 
was adsorbed on the surface, but not intercalated into the 
middle layer of waste-CaAl-LDH-Cl by ion exchange. In 
addition, according to JCPDS Card No.05-0586, the peak at 
29.400° (104) may be due to the existence of calcium carbon-
ate in the solid waste precipitate. This is due to the ultra-
high lime aluminum process will absorb carbon dioxide in 
the air to generate calcium carbonate during operation. And 
because CR is amorphous, it does not show narrow peaks. 

Therefore, the strongest crystallinity of the adsorbed sam-
ple may be calcium carbonate which does not participate 
in the adsorption reaction.

The FTIR spectra of CR, waste-CaAl-LDH-Cl, and 
waste-CaAl-LDH-Cl after adsorption 30 and 50 mg/L CR 
are also performed and depict in Fig. 10b. For CR, the char-
acteristic peaks at 3,467; 1,581; 1,064 and 1,176 cm–1 were 
identified as –NH2 stretching vibration, aromatic skeletal 
vibration, S=O symmetric and asymmetric stretch bond, 
respectively [46,47]. After CR adsorption, the appearance of 
two new bands at 1,176/1,172 cm–1 and 1,045 cm–1 further 
confirmed the adsorption of CR. The shift of characteristic 
peaks to low frequency also confirmed the existence of elec-
trostatic interaction or hydrogen bond [27]. The main layer 
of LDH ([Ca2Al(OH)6]+) is positively charged and CR (CR-
SO3

–) in aqueous solution is negatively charged, so there is 
an electrostatic attraction between waste-CaAl-LDH-Cl and 
CR (CR-SO3

– + [Ca2Al(OH)6]+ → CR-SO3
– ~ +[Ca2Al(OH)6]). 

Moreover, the adsorption of CR may be also due to the 
hydrogen bond formed between the electronegative atoms 
of dye and adsorbents such as oxygen, nitrogen or sulfur 
and hydrogen atoms [48]. In Fig. 10b, it was evident that 
the –OH (3,488 cm–1) in waste-CaAl-LDH-Cl slightly shifted 
to lower wavenumber (3,436 cm–1) after CR adsorption, 
reflecting the possibility of hydroxyl groups participat-
ing in the adsorption process through a hydrogen bond. 
Furthermore, CR may be adsorbed on the surface of waste-
CaAl-LDH-Cl due to a coordination effect of metal ions 
(Ca2+ and Al3+) with –NH2 and –SO3

– groups of CR [48,49]. 
As Fig. 9b shows, the peaks at 532 and 424 cm–1 indi-
cated the lattice vibrations of Al–OH and Ca–OH, which 
disappeared completely after adsorption CR of 50 mg/L.

The SEM morphologies of waste-CaAl-LDH-Cl after 
adsorption 30 and 50 mg/L CR are shown in Fig. 10c and 
d. Fig. 10c shows that after adsorbing 30 mg/L CR, the 
adsorbent presented a relatively broken shape, with small 
particles on the surface. This is consistent with the research 
conclusion of Fernando Pereira de Sá [26]. After adsorbing 
50 mg/L CR, as shown in Fig. 10d, the layered structure 
was almost invisible and completely wrapped by gran-
ular materials. The electron microscope images further 
proved that the adsorption was surface adsorption.

The above analysis showed that the adsorption between 
the waste-CaAl-LDH-Cl and CR was mainly surface 
adsorption. The mechanism may be electrostatic inter-
action between the positively charged adsorbent surface 
and negatively charged SO3

– groups of CR, the hydrogen 
bond between –NH2 of CR and –OH of the adsorbent sur-
face and the chemical complexation between M (metal 

Table 9
Thermodynamic parameters for adsorption of CR on waste-
CaAl-LDH-Cl

T (K) ΔG°  
(kJ/mol)

ΔH°  
(kJ/mol)

ΔS° 
(kJ/mol K)

R2

303 –2.6757
301.1145 1.0017 0.98156308 –6.8761

313 –12.7107
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Fig. 9. Thermodynamic plot for adsorption of CR on waste-
CaAl-LDH-Cl.
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ion) and sulfonate groups of CR. The experimental pro-
cess and mechanism are shown in Fig. 11.

4. Conclusions

This study showed that waste-CaAl-LDH-Cl is an effec-
tive adsorbent for the removal of CR dye from the aqueous 
solutions. Adsorption of CR was found to increase with 
the increase in contact time, initial dye concentration and 
solution temperature. The adsorption of CR on waste-
CaAl-LDH-Cl was favored at an acidic medium. The 
adsorption kinetics followed the pseudo-second-order 
model, whereas Langmuir adsorption isotherm fitted bet-
ter to obtained data. The highest adsorption of 123.9 mg/g 
was recorded at 90 min and 313 K. The intraparticle dif-
fusion indicates that more than one process affected 
the adsorption. The values of ΔG°, ΔH° and ΔS° were 
–2.6757 ~ –12.7107 kJ/mol, 301.1145 kJ/mol and 1.0017 kJ/
mol K, respectively, indicating that the adsorption process 
was spontaneous and endothermic chemisorption. And 
the randomness at the solid-solution interface was increas-
ing. Further, the FTIR, XRD and SEM analysis, results 
showed that the adsorption mechanism also included 
the electrostatic interaction, hydrogen bond and chemi-
cal complexation. These results showed that waste-CaAl-
LDH-Cl obtained from the treatment of DCW using ultra-
high lime with the aluminum process can be used as an 
adsorbent to effectively remove anionic organic pollutants 
in dye wastewater, so as to achieve the purpose of resource 
recycling and utilization.
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