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a b s t r a c t
Mn-ZnS QDs synthesized by hydrothermal method and modified by L-cysteine for better stability 
emit phosphorescence at 590 nm. The characterization of L-cysteine-capped Mn-Doped ZnS quan-
tum dots were studied by transmission electron microscopy (TEM), phosphorescence, fluorimetry 
and UV-Vis absorption spectroscopy. To fabricate a new electrochemical sensor, L-cysteine-capped 
Mn-Doped ZnS quantum dots and multiwall carbon nanotube (MWCNT) were placed on the 
surface of glassy carbon electrode (ZnS/MnQDs-MWCNTs/GCE). Then, it was applied for the 
determination and detection of environmental pollutant hydrazine in water samples. The electro-
oxidation behaviors and the effective stepwise assembly procedure of the modified electrode were 
confirmed by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), 
cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Based on the findings, ZnS/Mn 
QDs-MWCNT composite can be considered a suitable candidate for hydrazine electrooxidation. 
The linear rang, detection of limit (DL), limit of quantification (LOQ) and sensitivity were 90–1,200 
nanomolar, 28 nM, 95 nM and 0.001 µA nM–1, respectively. The repeatability in the presence of 
hydrazine (100 µM) was studied and the variation coefficient (R.S.D) was 2% for five consecu-
tive tests. The proposed sensor shows many advantages such as very low detection of limit, high 
sensitivity, stability and it can be used for detection of hydrazine in real samples.
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1. Introduction

Hydrazine (N2H4) has many uses in the aerospace, indus-
trial, military and pharmacological fields. N2H4 is widely 
applied as antioxidant, catalyst, emulsifier, pesticide, corro-
sion inhibitor, deoxidizers in boilers reducing agent and in 
photo printing and pharmaceuticals. Moreover, it is used 
in fuel cells, military and aerospace industries, high-energy 
propellants in rockets and weapons for mass destruction. 
Hydrazine is a neurotoxin and it can affect kidneys, lungs 
and liver as well as cause respiratory tract infections. It also 
produces carcinogenic and mutagenic effects. Accordingly, 
finding a sensitive and appropriate analytical method for 
the determination and detection of hydrazine is essential [1]. 
For the determination of hydrazine, the following methods 
have been reported: spectrophotometry [2] electrochemi-
cal [3] titration [4] luminescence [5] flow injection analysis 
[6,7] and chromatography [8]. Amongst the aforementioned 
methods, the electrochemical method is sensitive, rapid, 
selective, low cost and effective. However, in this method, 
direct oxidation is not possible or requires a large over poten-
tial with conventional electrodes. Hydrazine is oxidized at 
high potential and its direct oxidation is not possible with 
conventional electrodes which limits the application of elec-
trochemical methods for detecting and determining N2H4. 
The electrochemical treatment in regard to some materials, 
including N2H4, depends on the structure of the electrode 
surface [9]. Direct hydrazine oxidation at several electrode 
surfaces such as gold, silver, mercury [10], platinum [11], 
nickel [12] and rhodium [9] have been reported. For mini-
mizing over-potential and enhancing the electron transfer 
rate, the surface of the electrode should be modified. Several 
modifiers such as hematoxylin [13], chlorogenic acid [14,15], 
acetylferrocene [16], coumestan [17], 4-pyridyl hydroqui-
none [18,19], metals [20–22], CdSe quantum dots @ nickel 
hexacyanoferrate core–shell nanoparticles [q1] and Carbon 
Quantum Dots [q2] are applied to minimize over potential 
and increase charge-transfer rate [25].

Carbon nanotubes (CNT) have unique chemical, electri-
cal, thermal, optical and mechanical properties in addition 
to a particularly large surface area. For this reason, they 
have been applied in microelectronics, environment, com-
posite materials, biosensors, modifiers of electrode surfaces 
and particularly in the field of environmental monitoring 
and sensing [26,27]. The materials of carbon nanotube as 
composite can further enhance an electrode’s electrocat-
alytic capability as exemplified in metal blue/CNT com-
posite for oxidizing nicotinamide adenine dinucleotide 
and ZnONps/MWCNT/chitosan modifier for detecting 
the sequence-specific of PAT genes. The use of nanome-
ter-sized conducting and semiconducting materials such 
as quantum dots (QDs) has attracted significant attention 
in research studies [28]. Quantum dots, semiconductor 
crystals are 1 to 10 nanometers in diameter. These materi-
als contain group II–VI elements or group III–V elements. 
Because these materials are size-tunable and chemically 
functionalizable, and have catalytic effect properties, they 
are used as modifiers in electrochemical sensors and bio-
sensors. For instance, Wang et al. presented a new electro-
chemical biosensor based on horseradish peroxidase (HPR) 
and liophilic Cd/ZnS QDs for detection of H2O2 [29]. Liu et 

al. [30] reported an innovative electrochemical biosensor 
by modifying a glassy carbon electrode with glucose oxi-
dase/CNT/CdTe QDs nanocomposite for glucose samples.  
In addition, the electrochemical behaviors of hemoglo-
bin and glucose oxidase were and investigated [21–32]. 
Recently, a novel class of quantum dots (doped quantum 
dots, d-dots) found on transition-metal-ion-doped QDs 
in the absence of heavy-metal ions (cadmium, mercury as 
well as lead) was studied. These compounds have unique 
properties such as photostability, temperature stabil-
ity, zero-reabsorption, low cytotoxicity and highly emis-
sive d-dots as efficient as standard QDs which have been 
considered for the manufacture of sensors and biosen-
sors. Manganese is suitable under industrial standards as 
exemplified in studies investigating ZnSe and ZnS doped 
with Mn ions [33]. In this study, the application of ZnS/
Mn QDs-MWCNTs as a mediator for electrooxidation of 
hydrazine at pH = 7 was investigated. Due to stability, very 
low detection of limit, simple preparation and antifouling 
properties, ZnS/Mn QDs-MWCNTs/GCE was used as an 
amperometric sensor for nanomolar detection of hydrazine.

2. Experimental

2.1. Reagents

L-cysteine amino acid, hydrazine, manganese chloride 
(MnCl2), zinc sulfate (ZnSO4), and sodium sulfide (Na2S) were 
obtained from Merck Company, and MWCNT from Sigma-
Aldrich. In addition, (Na3PO4), (Na2HPO4), (NaH2PO4), (HCl) 
and (NaOH) materials were used for buffer preparation.

2.2. Instruments

Electrochemical tests were conducted with a computer 
controlling µ-system (Eco ChemieU/techt). Electrochemical 
analysis was carried out by a platinum counter, a glassy car-
bon (GC) as a working and Ag/AgCl [KCl (sat)] as a reference 
electrode. These electrodes were obtained from Metrohm 
Company.

2.3. Preparation synthesis of ZnS/Mn quantum dots

Preparation of L-cysteine-capped Mn-Doped ZnS 
quantum dots was performed based on the reported pro-
cedures [34,35]. A typical synthesis procedure is as follows. 
4 mL of 0.1 molar zinc sulfate and 50 mL of L-cys amino 
acid (0.02 M) were transferred into a three-necked flask. The 
pH of the solution was then adjusted to 11 using sodium 
hydroxide and purged with pure N2 gas for 40 min under 
magnetic stirring. Subsequently, 4 mL of 0.01 M manga-
nese(II) chloride was added into the prepared solution 
and stirred again for 40 min. Then, 5 mL of 0.1 molar Na2S 
was added to the vortex of solution and was stirred for 
70 min. This was followed by the solution being sealed 
and incubated for 12 h in 50°C water bath. Finally, it was 
centrifuged and washed with ethanol.

2.4. Fabrication of the modified electrode

First, the bare GCE was polished using emery papers 
and aluminum oxide slurry. In order to remove adsorbed 
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particles, this electrode was sonicated in distillate water 
and ethyl alcohol for 5 min. Then, 2 mg ZnS/Mn quantum 
dots and 1 mg multiwall carbon nanotube to stabilize the 
nanoparticles on the electrode surface (were added to 5 mL 
ethyl alcohol and ultra-sonicated for 40 min in order to pre-
pare a homogeneous ZnS/Mn quantum dot-MWCNT solu-
tion. Finally, 6 µL of prepared solution was placed onto the 
bare GCE electrode and dried at room temperature.

3. Results and discussion

3.1. Characterization of ZnS/Mn quantum dots

As shown in Fig. 1A, UV-Vis absorption spectroscopy (a), 
fluorimetery (b) and phosphorescence (c) are used to exam-
ine the characteristics of Mn-doped ZnS QDs. According to 
Fig. 1A-a Mn-doped ZnS QDs has an absorption spectrum 
presenting a shoulder absorption peak at 282 nm, while ZnS  
nanoparticles has an absorption spectrum of 290 nm and 
a blue shift can be seen. These results are consistent with 
previous data [36]. The fluorescence behavior of ZnS QDs 
and Mn:ZnS QD’s are demonstrated in Fig. 1B-b. As illus-
trated from the spectra, when the manganese ion is added, 
the red shift from 450 (ZnSQDs) to 600 nm (Mn:ZnS QDs) is 
seen. In Fig. 1Ac the phosphorescence behavior of Mn/ZnS 
QDs are presented. The phosphorescence emission spec-
trum of Mn:ZnS QDs depicting a symmetric profile peaked 
at 590 nm. The intense phosphorescence was associated with 
the transition of (4T1) → (6A1) for Mn2+ [37]. The morphology 
of the Mn-doped ZnS QDs was investigated by TEM. The 
results suggested that the Mn-doped ZnS QDs are almost 
spherical, with an average particle diameter of 9 nm (Fig. 1B).

Based on the XRD pattern (Fig. 2A), it can be observed 
that three broad peaks related to (311), (220), and (111) 
reflecting planes prove Mn:ZnS dots to have a cubic zinc 
blende structure similar to un-doped ZnS quantum dots. 
Dopant manganese (II) did not affect the crystal structure 
of ZnS quantum dots. Based on the FT-IR spectra of Mn-ZnS 
QDs (Fig. 2B), the absorption peak at 3,466 cm–1 was related 
to the stretching vibration of hydroxyl groups in the car-
boxyl functional group and two absorption peaks at 3,330 
and 3,270 cm–1 subjected to amino characteristics. Clearly, 

the N–C stretching peaked at 1,600 cm–1 and the absorp-
tion peak at 1,125 cm–1 was related to the carbonyl group 
in the carboxyl group. At 2,600 cm–1, the mercapto vibra-
tional peak disappeared due to the binding of the sulfhydryl 
and the surface of Mn-ZnS QDs.

3.2. Electrochemical characterization and morphological 
of ZnS/Mn QDs-MWCNTs/GC electrode

Fig. 3 indicates the SEM images of MWCNTs as well 
as ZnS/Mn QDs-MWCNTs directly placed on the sur-
face of GCE as a uniformly distributed ZnS/Mn QDs in 
MWCNTs. In order to appraise the electrochemical effi-
cacy of the electrodes and the changes in their surfaces, 
electrochemical impedance spectroscopy was applied. Fig. 
4 indicates the Nyquist plots for several electrodes: bare 
GCE (a), MWCNT/GCE (b) and ZnS/Mn QDs/MWCNTs/
GCE (c) in 5 mM Fe(CN)6

3–/4– probe. Based on the Nyquist 
plots, the semicircle section is related to charge transfer 
limited process and the diameter is related to the charge 
transfer. Rct (charge transfer resistance), Rs (solution resis-
tance), and C (the double layer capacitance) are presented in  
Fig. 4 (Inset) and the EIS data was obtained from the tested 
electrodes fitted on a simple equal circuit. In addition, a 
number of parameters were applied to fit the experimen-
tal electrochemical impedance results as shown in Table 1. 
Based on the results, for the bare GC electrode, the Rct value 
was considerably high. When the MWCNT was employed, 
the Rct value was decreased due to the increased charge 
transfer. When ZnS:Mn was added into the MWCNT com-
posite, the Rct value decreased substantially. This demon-
strates the modification of the surface electrode and easier 
charge transfer between the electrode surface and the probe.

3.3. Electrocatalytic oxidation of N2H4 on ZnS/Mn 
QDs-MWCNTs/GCE

Through cyclic voltammetry technique, the electrocata-
lytic oxidation properties of ZnS/Mn QDs-MWCNTs/GCE 
was studied for analysis of the N2H4 sample. The results 
suggest that at the surfaces of GC and MWCNT/GC elec-
trodes, no redox peak of hydrazine could be observed 

Fig. 1. (A) UV-Vis absorption (a), fluorescence emission (b) and room temperature phosphorescence (c) spectra of Mn-doped 
ZnS QDs. (B) Transmission electron microscopy image of Mn-doped ZnS QDs.
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in the potential range of 0–1 V. However, at the ZnS/Mn 
QDs-MWCNTs/GCE surface, the anodic peaks current 
increased with catalytic oxidation of hydrazine as shown in 
Fig. 5. A substantial growth of peak current was observed 
denoting considerable catalytic capability of ZnS/Mn QDs-
MWCNTs for hydrazine oxidation. Moreover, at the sur-
face of ZnS/Mn QDs-MWCNTs/GCE, the overvoltage for 
hydrazine oxidation declined dramatically. Therefore, ZnS/
Mn QDs-MWCNTs is a good mediator to shuttle electron 
between hydrazine sample and modified working elec-
trode. For the purposes of investigating the electrocatalytic 
behavior and optimal pH of ZnS/Mn QDs-MWCNTs, the 
impact of pH on the electro-oxidation response of the ZnS/
Mn QDs-MWCNTs/GCE to hydrazine was evaluated. The 
cyclic voltammograms (CVs) of the novel sensor in 180 µM 
hydrazine was investigated at different pH values. Based 
on Fig. 6, at pH range 2–9, the ZnS/Mn QDs-MWCNTs/GCE 
showed electrocatalytic behavior. However, the highest 
peak current was observed at pH 7. Furthermore, the electro-
chemical behavior of the proposed electrode in the presence 
of different amounts of hydrazine sample was investigated 
through the CV technique. Fig. 7 illustrates that the oxida-
tion peak currents of the catalytic anodic peak at 0.4 V is 
increased linearly with increasing amounts of hydrazine 
sample. Based on the aforementioned results, a possible 
4-electron process mechanism can be proposed, leading 
finally to the generation of nitrogen gas [Eqs. (1)–(3)]:

N2H4 + H2O → N2H3 + H3O+ + e‒ (1)

N2H3 + 3H2O → N2 + 3H3O+ + 3e‒ (2)

N2H4 + 4H2O ⇌ N2 + 4H3O+ + 4e‒ (Overall reaction) (3)

 

Fig. 2. XRD (A) and FTIR of Mn-doped ZnS QDs (B).

Fig. 3. SEM of MWCNT (A) and Mn-doped ZnS QDs/MWCNT (B).
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Based on Fig. 7 (inset), the curves of anodic peak cur-
rent vs. different amounts of hydrazine present a linear 
behavior from 10 to 200 µM. The sensitivity was calcu-
lated at approximately 0.0119 µA µM−1. In addition, other 
para meters such as detection limit of 3 µM and the deter-
mination limit of 25.3 µM were obtained resulting in the 
proposed electrode possessing the capability for the detec-
tion and determination of hydrazine. Fig. 8 indicates the 
cyclic voltammograms of 100 µM of hydrazine sample at 
different potential scan rates (10–100 mV s–1). The anodic 
peak currents for electrooxidation of hydrazine are propor-
tional to the square root of the scan rate (v1/2) (Fig. 8, inset), 
suggesting that the mechanism is under the control of diffu-
sion. For obtaining the low detection limit, differential pulse 
voltammetry (DPV) is a good method. The differential pulse 
voltammograms of the proposed sensor in the presence of 
different amounts of hydrazine, 90–1,200 nM, are presented 
in Fig. 9. A linear relationship of the anodic peak cur-
rents (Ipa) vs. concentration of hydrazine can be presented 
in the I (µA) = 0.001 [hydrazine] µA nM–1 + 0.4607 µA 
equation. The detection of limit (DL) was 28 nM at S/N = 3.

3.4. Repeatability and stability

For the proposed electrode, the repeatability in the pres-
ence of hydrazine (100 µM) was studied and the variation 

coefficient (R.S.D) was 2% for five consecutive tests. The 
nanosensor’s lifespan and stability were considered by 
investigating the response oxidation currents of the pro-
posed nanosensor at time spans of 7 and 28 d. The decline 
in the electrode behaviors were 97% and 88.5% of initial 
oxidation current response after 7 and 28 d, respectively.

3.5. Interference effects

With the purpose of investigating the selectivity of 
the ZnS/Mn QDs-MWCNTs/GCE, the influence of some 
inorganic ions and phenolic compounds were studied in a 
buffer phosphate (pH = 7) containing 50 µM N2H4. Based on 
the results, 2-fold amounts of nitrophenol, phenol and a set 
of anions and cations for 20-fold amounts of F–, Mg2+, PO4

3–, 
Br–, Na+, Li+, Ca2+, Cl–, IO3

–, Pb2+and Zn2+ had no effects on 
N2H4 analysis.

3.6. Comparison of ZnS/Mn QDs-MWCNTs modified 
electrode with those of preceding electrodes

Table 2 compares the limit of detection, sensitivity and 
applied potential of the ZnS/Mn QDs-MWCNTs modified 
electrode for hydrazine determination with those of other 
hydrazine electrodes presented in previous reports, and 

Fig. 4. Electrochemical impedance spectroscopy (EIS) of GCE 
(a) MWCNT/GCE, (b) Mn-doped ZnS QDs/MWCNT/GCE and 
(c) in 5 mM probe Fe(CN)6

4/3–.

 
Fig. 5. Cyclic voltammograms of different electrodes: (a) unmod-
ified, (b) MWCNT/GCE, (c) Mn-doped ZnS QDs/MWCNT/
GCE in the presence of hydrazine.

Table 1
Electrochemical impedance spectroscopy data for different electrodes

R1(C[R2W]) GCE GCE/MWCNT GCE/MWCNT/ZnS:Mn

Value Error (%) Value Error (%) Value Error (%)

R1 0.431 KΩ 3.028 398.5 Ω 5.409 389 KΩ 3.279
C 0.414 µF 6.782 0.432 µF 6.239 0.440 µF 3.153
R2 0.95 KΩ 3.324 0.84 KΩ 5.176 0.715 KΩ 3.222
W 0.3204 × 10–3 10.291 0.20 × 10–3 10.066 0.189 × 10–3 5.14
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demonstrates that the proposed electrode assays present a 
comparable or better properties for N2H4 detection.

3.7. Application

To evaluate the performance of ZnS/Mn QDs-MWCNTs 
modified electrode in practical applications, measurement 
of hydrazine in real matrix samples were investigated 
via a recovery parameter. As demonstrated in Table 3, 
the recoveries obtained (from 98.4 to 104.5) in measure-
ment of hydrazine in different water samples (tap, min-
eral and lake waters) are satisfactory and ZnS/Mn QDs-
MWCNTs/GCE is able to determine the concentration of 
hydrazine in water samples.
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Fig. 6. The plot of a GCE modified for values pH (from 2 to 9).

Fig. 7. Cyclic voltammograms of Mn-doped ZnS QDs/MWCNT/
GCE in the presence of different concentrations of hydrazine 
from 10 and 180 µM. Inset, plot of Ip vs. hydrazine amounts.

Fig. 8. Cyclic voltammetry curves of a Mn-doped ZnS QDs/
MWCNT/GCE in the presence of hydrazine at different scan 
rates. Inset, plot of Ip vs. v1/2.

Fig. 9. DPV of Mn-doped ZnS QDs/MWCNT modified GC electrode in the presence of different concentrations of hydrazine 
from 100 to 1,200 nM. Inset, the curve of oxidation peak currents vs. hydrazine concentrations.
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4. Conclusions

In conclusion, authors reported a novel electrochem-
ical sensor for sensitive detection of hydrazine. Firstly, 
Mn-Doped ZnS quantum dots (QDs) were obtained by 
hydrothermal technique and immobilized with multi wall 
carbon nanotube (MWCNT) on the surface of GC electrode. 
ZnS/Mn QDs and multi wall carbon nanotube (MWCNT) 
demonstrated excellent electrocatalytic properties for elec-
trooxidation of N2H4 and the proposed electrode displayed 
advantages in some electrochemical parameters reported 
in research. The proposed method can be applied to other 
quantum dots and is recommended for the measurement 
of other samples.
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