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a b s t r a c t
Estrogens are one of the micropollutants in the wastewater which are harmful to the aquatic. 
Because the biological processes in wastewater treatment plants cannot completely remove micro-
pollutants, these compounds are present in wastewater effluents. Therefore, we need a treatment 
method to remove the hormones from the wastewater. Ultrasound waves are very effective to elim-
inate the micropollutants. This study is based on an analysis of publications published since 2000. 
Here, ultrasound-assisted research on the removal of hormones (estrone (E1) and 17β-estradiol (E2)) 
from wastewater were studied, then data was collected from existing papers and the model was 
applied to them. Hormone removal from the wastewater by ultrasound-assisted was modeled and 
optimized using a multilayer artificial neural network coupled with a genetic algorithm. A net-
work was designed in multilayer perceptron. Various training algorithms were evaluated, and the 
Levenberg–Marquardt (LM) algorithm was selected as the best one. The optimal number of neurons 
in the hidden layer was 12, according to the maximum correlation coefficient (R), the lowest abso-
lute mean error, the lowest mean bias error, and the minimum mean square error. According to the 
results of genetic algorithm, the optimum performance conditions were determined, and the results 
showed that increasing pH and power density, increased the efficiency of hormone removal from 
the wastewater. Finally, sensitivity analysis was performed by the Spearman method.
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1. Introduction

Steroid hormones are one of emerging pollutants in 
water resources which has destructive effects on aquatic 
animals [1]. One type of steroid hormone is estrogen. The 
two most important hormones secreted by all humans and 
animals are estrone (E1) and 17β-estradiol (E2) [2].

Steroid hormones are harmful to human and ani-
mal health and interfere with their reproduction; thus, 
they are a primary environmental concern [3]. Studies in 
rodents have demonstrated that estrogens are carcinogens 
in various tissues, including the kidneys, liver, uterus, 
and mammary glands [4]. Although steroid hormone 
concentrations are modest (0.2–64 ng/L), their negative 
impacts on the environment are significant [5]. The rising 
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concentration of hormones in water and wastewater sources 
has piqued the interest of many academics. Several 
research on hormones have been attributed to the removal 
or reduction of hormones in wastewater. The most essen-
tial methods to eliminate these hormones are: activated 
sludge [6], oxidation ditch [7], aeration lagoon [8], nano-
filtration [9], activated carbon adsorption [10], water 
chlorination and photo-Fenton-like degradation [11]. 
Studies showed that some of these methods do not have 
acceptable efficacy to reduce the hormones. According 
to studies, biological treatment can destroy hormones, 
but some hormones remain in the effluent. The ability to 
remove hormones is higher in advanced processes, but 
they face two problems, restrictions on high costs and the 
production of dangerous by-products. One of the most 
effective methods of hormone removal which was consid-
ered today is the ultrasound method. One of the essential 
advantages of this method is the lack of by-products [2].

Another challenge in wastewater treatment is its 
dynamics. Many changes in discharge, concentration, and 
composition of incoming wastewater are among these cases. 
Besides, it is mainly impossible to control these changes. 
Thus, computer modeling and simulations are required 
to explain, forecast, and regulate processes with complex 
relationships. In addition to laboratory research, model-
ing plays a significant role in maximizing information and 
saving time and money. A model which can better predict 
the features and performance of a system is undoubtedly 
superior. Models such as response surface methodology 
(RSM) and artificial neural networks (ANN) are used 
to predict complex pollutant removal processes in the  
environment.

One of the essential steps to achieve high elimination 
efficiency of hormones is to study the effective parameters in 
their elimination and optimize these parameters. According 
to the researchers, the ANN response was very appropri-
ate to analyze the bacterial processes with complex condi-
tions. Artificial neural networks are modern systems and 
computational methods for machine learning, knowledge 
display, and finally, the application of acquired knowledge 
to maximize the output responses of complex systems [12].

A genetic algorithm (GA) is an innovative and 
optimized search method inspired by Charles Darwin’s 
theory of natural selection. This algorithm represents the 
theory of natural selection, where the most suitable peo-
ple are selected to continue the generation and produce 
children [13].

Because the ultrasound method is a novel and appli-
cable process to remove micropollutants from wastewater 
[14], it was investigated in many studies [15,16]. However, 
using ultrasound to remove hormones appears to eval-
uate in very few studies. Few studies were performed 
on removing hormones from wastewater by ultrasound. 
Indeed, no study was done on modeling and optimiz-
ing the effective parameters to eliminate them with this 
process. Therefore, this study aimed to use artificial 
intelligence to model and optimize the removal of steroid 
hormones from wastewater by ultrasound. The results of 
this review were modeled and the interaction of variables, 
such as the effect of duration of exposure to ultrasound, 
pH, frequency, ultrasound power, probe cross-sectional 

area, and reactor size was evaluated on hormone removal 
efficiency. To predict the removal efficiency of hormones 
in different conditions, use an artificial neural network 
coupled with a genetic algorithm to optimize the process  
parameters.

2. Materials and methods

2.1. Data gathering

We present an overview of the literature to describe 
the hormone removal using ultrasound processes. This 
work is based on a literature review covering the period 
from 2000 to 2021, and used several scientific web bases: 
Web of Science, Pub med, Scopus, Google Scholar, Google, 
Pro-Quest, and Science Direct. Different keywords were 
applied: hormones, E1, E2, ultrasound, micropollutants, 
and wastewater. Table 1 shows the physico-chemical char-
acteristics of the hormones evaluated in this investigation. 
As indicated in Table 2, a total of 12 papers evaluated the 
elimination of micropollutants by ultrasound, three of 
which dealt with steroid hormones. The following three 
articles have been mined for information. Fig. 1 depicts 
the flowchart for this evaluation.

2.2. Selected parameters description

Based on the literature review, the following param-
eters were selected as the most critical parameters in the 
ultrasound process, which are pH, power density [Eq. (1)], 
power intensity [Eq. (2)], frequency, and time.
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Fig. 1. Review flow diagram of this study.
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where Pinput, V, and Ap represent power input, the volume 
of the sample, and probe transmitting area, respectively.

The independent and responses (dependent) vari-
ables and their levels, and descriptive statistics of all input 
and output parameters are presented in Tables 3 and 4, 
respectively. Besides, the schematic of ultrasound reactor is 
given in Fig. 2.

3. Artificial neural networks

3.1. ANN theory

An artificial neural network is a numerical model 
which imitates the human brain’s biological neural net-
work, able to learn and recognize complicated non-linear 
functions [29,30]. The nntool (a toolbox in MATLAB 
software), MATLAB version 2014b, have been used for 
modeling. Feed-forward back-propagation multilayer per-
ceptron ANNs are the most widely used network in envi-
ronmental engineering [31,32]. There are several layers in 
a neural network: the input layer, the hidden layer, and 
the output layer [33]. First, the input vector is multiplied 
by the cell weight vector; then, the transfer function works 
on it. The data are then processed in the hidden layer, and 
the output layer is formed [34]. Each layer is made up of 
several neurons. The number of hidden layer neurons 
effectively achieves a reasonable response [Eqs. (3)–(5)]. 
If too few neurons are included in the network, it might 
not be possible to fully detect the signal and variance of 
a complex data set. In contrast, if too many neurons are 
used, the ANN has too many parameters and may over-
fit the data [35]. Weights in the neural network are the 
most critical factor in converting input to output [36].
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where i, o, and n represent number of inputs, number of 
outputs, and number of hidden layer neurons, respectively 
[32,37].

The extracted data, which included 229 data sets, 
were divided into three subsets of 70% training, 15% val-
idation, and 15% test using a random selection method 
[38]. In many studies, classification has been done in the 
same way [39].

In the next step, the errors calculated in the validation 
step are controlled and are expected to decrease during the 
training. If the calculated error increases during the valida-
tion step, the training will stop. Networks with the high-
est correlation coefficient (R2) and the lowest error rate: 
mean square error (MSE), mean absolute error (MAE), and 
mean bias error (MBE), are the best networks, Eqs. (6)–(9).
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where n, Yexp, Ypred, represent the number of dataset val-
ues, the experimental value of the experiment, and the 
predicted value of the experiment by the model, respec-
tively [40–42].

3.2. GA theory

Genetic algorithm (GA) is one of the evolutionary opti-
mization problem-solving techniques [43]. GA produces an 
initial population at random and then employs mutation, 
selection, and intersection operators to develop this pop-
ulation. Children that score genetically higher on the fit-
ness function have a greater probability of passing it on to 
the next generation with each process iteration. Thus, after 

Table 1
Physico-chemical properties of steroid hormones [17]

Hormone Molecular 
formula

Molecular weight 
(g/mol)

Water solubility 
at 25°C (mg/L)

log(Koc) log(Kow) Molecular 
structure

17β-estradiol (E2) C18H24O2 272.38 82 2.90 4.01

Estrone (E1) C18H22O2 270.37 147 3.02 3.43
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Resources studied

DatasetYearSourceParametersPaper nameNo.

–2007[18]- Concentration (mg/L)
- pH
- Reaction time
- Catalyst and oxidant
- Concentrations

Review on endocrine-disrupting merging com-
pounds in urban wastewater: occurrence and 
removal by photocatalysis and ultrasonic 
irradiation for wastewater reuse

1

ü2007[19]- pH
- Duration of ultrasound exposure
- Frequency
- Ultrasound power
- Probe cross-sectional area
- Reactor size

Ultrasound-assisted destruction of estrogen 
hormones in aqueous solution: effect of power 
density, power intensity, and reactor configu-
ration

2

ü2007[20]- pH
- Duration of ultrasound exposure
- Frequency
- Ultrasound power
- Probe cross-sectional area
- Reactor size

Ultrasound-induced destruction of low levels of 
estrogen hormones in aqueous solutions

3

–2009[21]- pH
- Time
- Initial concentration of pharmaceuticals
- Temperature

Fate of pharmaceuticals in contaminated urban 
wastewater effluent under ultrasonic irradia-
tion

4

–2012[22]
–

Processes for the elimination of estrogenic steroid 
hormones from water: a review

5

–2013[23]- Effect of solvent volume
- Impact of manual shaking of sample
- Amount of buffering salt
- Extraction time

Determination of phenols and pharmaceuticals in 
municipal wastewaters from Polish treatment 
plants by ultrasound-assisted emulsification

6

–2015[24]- Process mode
- Power (W)
- Frequency (kHz)

Sonochemical techniques to degrade pharmaceuti-
cal organic pollutants

7

–2015[25]- Retention time (tR) [min]
- Volume of extraction solvent

Determination of personal care products and 
hormones in leachate and groundwater from 
Polish MSW landfills by ultrasound-assisted 
emulsification microextraction and GC-MS

8

–2016[26]- Frequency (kHz)
- Power
- pH
- Temp. (°C)

Degradation of pharmaceuticals by ultra-
sound-based advanced oxidation process

9

–2016[27]- Frequency (kHz)
- Power (Watt)
- Time (min)

Production of hydroxyl free radical, the main the 
mechanism for removing steroid hormones by 
ultrasound

10

–2017[28]- pH
- Temperature
- US frequency
- Power
- Reactor type
- C0 (LG.L_1)

Ultrasonic treatment of endocrine-disrupting com-
pounds, pharmaceuticals, and personal care 
products in water: a review

11

ü2018[2]- pH
- Duration of ultrasound exposure
- Frequency
- Ultrasound power
- Probe cross-sectional area
- Reactor size

Hormones removal from municipal wastewater 
using ultrasound

12
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several generations, the answer to the problem leads to an 
optimal solution [44]. GA was used to optimize the parame-
ters included to achieve the highest removal efficiency of E1 
and E2 hormones.

4. Results and discussion

4.1. Mechanism of the sonochemical process

In the ultrasound process, a series of chemical reactions 
are caused by sound waves. As a result of these chemical 
reactions, the cavitation occurs. When ultrasonic waves 
enter the liquid, they create oscillating zones. In these oscil-
lations, bubbles are formed in terms of positive and nega-
tive pressures on the liquid. These bubbles grow due to 
the absorption of energy by ultrasound waves. Eventually, 
these bubbles explode during the compression cycle [24]. 

In a typical treatment, organic pollutants are destroyed 
in two ways, one by decomposition due to heat gener-
ated in the gas and the other by Degrade due to oxidation 
due to reaction with hydroxyl radicals in gas [45].

4.2. Neural network structure

Using MATLAB neural network, an optimal network 
with a suitable transmission function was created. This net-
work was trained in different structures. Finally, accord-
ing to the results obtained in Tables 5 and 6 of the LM 
(Levenberg–Marquardt) algorithm, showed the maximum 
correlation coefficient and the minimum error rate. Then 
a network was created with a hidden layer [46], and then, 
according to Eqs. (3)–(5), the hidden layer neuron range, 
with five input parameters and one output parameter, and 
229 data, was obtained 12–4, which was trained for each 
of the numbers in this network range, and finally, 12 neu-
ron showed the lowest error rate. This network was trained 
using several forms of transfer functions (Tan-Sig, Log-Sig, 
and Purelin), with the hyperbolic tangent sigmoid function 
(tansig) used for the hidden layer and a linear function (pure-
lin) used for the output layer, as shown in Table 7. Finally, a 
neural network with a fixed 5:12:1 topology was developed. 
Fig. 2 indicates the most effective ANN.

Fig. 3, shows the best correlation coefficient and the 
lowest error rate for validation, training, and testing data. 
According to this figure, training the network ends after 11 
epochs. Regarding the regression graphs in Fig. 2 show the 

Table 3
Amplitude of variables [2,19,20]

Independent variables Amplitude

pH 3–20
Power density (Pd), W/mL 0.05–2.1
Frequency (f), kHz 20–60
Time (t), min 10–120
Power intensity (Pi), W/cm2 13–35

Table 4
Descriptive statistics of all input and output parameters based on extracted data

Hormone removal pH Power intensity Power density Frequency Time

Descriptive statistics for E1 hormone data

No. Valid 229 229 229 229 229 229
Mean 47/7 6/69 27/9 0/12 43/6 72/34
Std. error of mean 1/8 0/185 0/4 0/02 0/9 2/287
Median 40/7 7 22/3 0/07 45 60
Mode 15/60a 7 22/29a 0/05a 30a 30
Variance 760/4 7/795 49/3 0/092 175/718 1197/2
Minimum 10/1 3 13/48 0/05 20 10
Maximum 98 10 35/03 2/10 60 120
Sum 10,913/93 1,531 6,379/3 28/88 9,980 16,565

Descriptive statistics for E2 hormone data

No. Valid 229 229 229 229 229 229
Mean 46/97 6/69 27/86 0/13 43/58 72/34
Std. error of mean 1/81 0/18 0/46 0/02 0/87 2/29
Median 40/04 7 22/3 0/07 45 60
Mode 11/90a 7 22/29a 0/05a 30a 30
Std. deviation 27/45 2/8 7/02 0/3 13/25 34/61
Variance 753/74 7/8 49/27 0/09 175/72 1,197/3
Minimum 10.40 3 13.48 0/05 20 10
Maximum 98.00 10 35.03 2/10 60 120
Sum 10,757/19 1,531 6,379/30 28/88 9,980 16,565
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network output for training, validation, and experimental 
data along a 45° line, it means that the network followed 
the target well, and the network response was satisfactory.

4.3. Sensitivity analysis

Sensitivity analysis shows how much the output 
of a network is affected by each of its inputs [47]. SPSS 

software was used for sensitivity analysis. Sensitivity anal-
ysis with Spearman correlation coefficient showed a confi-
dence level of 99%. At this stage, all input parameters in 
the sensitivity analysis were estimated, and the results were 
presented in the form of a tornado graph in Fig. 4. Based 
on these graphs, it was shown that pH, power density, 
and power intensity had the highest effect on the removal 
efficiency of E1 and E2 hormones. In contrast, the effect of 

Table 5
Best training algorithm and the optimal number of neurons in the hidden layer for the E1 hormone

ANN topology Training algorithm R (all data) R (test data) MSE MAE MBE

5:12:1 Quasi-Newton (BFG) 0.990 0.954 0.00068 0.02125 –0.00115
5:12:1 Conjugate gradient with Powell-Beale restarts 

(CGB)
0.992 0.990 0.00180 0.02497 –0.00067

5:12:1 Fletcher-Reeves conjugate gradient (CGF) 0.985 0.958 0.00152 0.03010 0.00216
5:12:1 Polak-Ribiere conjugate gradient (CGP) 0.982 0.955 0.00144 0.03216 –0.00074
5:12:1 Levenberg–Marquardt (LM) 0.997 0.995 0.00063 0.01725 0.00007
5:12:1 Scaled conjugate gradient (SCG) 0.992 0.992 0.00099 0.02407 0.00066
5:12:1 Resilient backpropagation (RP) 0.992 0.991 0.00137 0.02755 0.00210
5:12:1 Gradient descent (GD) 0.843 0.837 0.01646 0.11436 0.01457
5:12:1

Levenberg–Marquardt (LM)

0.997 0.995 0. 00063 0.01725 0.00007
5:11:1 0.996 0.991 0.000538 0.01784 0.048165
5:10:1 0.994 0.996 0.001121 0.02239 0.042101
5:9:1 0.996 0.993 0.000610 0.01834 0.039879
5:8:1 0.993 0.979 0.000488 0.02030 0.03384
5:7:1 0.990 0.985 0.001206 0.02418 0.032606
5:6:1 0.995 0.997 0.002283 0.0182 0.026304
5:5:1 0.989 0.967 0.001292 0.02293 0.0152
5:4:1 0.990 0.993 0.000443 0.02293 0.019487

Table 6
Best training algorithm and the optimal number of neurons in the hidden layer for the E2 hormone

ANN topology Training algorithm R (all data) R (test data) MSE MAE MBE
5:12:1 Quasi-Newton (BFG) 0.988 0.951 0.00139 0.02134 –0.00225

5:12:1
Conjugate gradient with Powell-Beale restarts 
(CGB)

0.992 0.993 0.00104 0.02659
–0.00322

5:12:1 Fletcher-Reeves conjugate gradient (CGF) 0.982 0.945 0.00218 0.03061 –0.00178
5:12:1 Polak-Ribiere conjugate gradient (CGP) 0.966 0.921 0.00226 0.05008 –0.00155
5:12:1 Levenberg–Marquardt (LM) 0.997 0.996 0.00045 0.01496 –0.00157
5:12:1 Scaled conjugate gradient (SCG) 0.982 0.983 0.00101 0.02974 –0.0021
5:12:1 Resilient backpropagation (RP) 0.972 0.987 0.00090 0.02887 0.008163
5:12:1 Gradient descent (GD) 0.884 0.869 0.03224 0.096441 –0.01306
5:12:1

Levenberg–Marquardt (LM)

0.997 0.996 0. 00045 0.01496 –0.00157
5:11:1 0.996 0.991 0. 000538 0.01784 0.04619
5:10:1 0.994 0.996 0.001121 0.02239 0.04401
5:9:1 0.996 0.993 0.000610 0.01834 0.03622
5:8:1 0.993 0.979 0.000488 0.02030 0.04027
5:7:1 0.990 0.985 0.001206 0.02418 0.03085
5:6:1 0.995 0.997 0.002283 0.0182 0.02465
5:5:1 0.989 0.967 0.001292 0.02293 0.01251
5:4:1 0.990 0.993 0.000443 0.02293 0.01712
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time and frequency was negligible, and these results were 
consistent with neural network results.

4.4. Optimal point by genetic algorithm

Optimization is a procedure of finding and comparing 
feasible solutions until no better solution can be found [48].

Using GA coding in MATLAB 2014 software, the optimal 
point of the system for the removal of hormones by ultra-
sound has been obtained.

Fig. 5 shows the GA response for the highest removal 
efficiencies of E1 and E2 hormones. This result is obtained 
by considering the neural network trained in the previous 
sections as a fitness function. The E1 removal efficiency vs. 
time at pH 8.95, power intensity 14.75 (W/cm2), power den-
sity 1.26 (W/mL), and frequency 47.79 (kHz) had the high-
est removal efficiency Fig. 4A). The E2 removal efficiency 
against time at pH 9.71, power intensity 33.13 (W/cm2), 
power density 0.6 (W/mL), and frequency 42.13 (kHz) had 
the highest removal efficiency (Fig. 4B).

4.5. Performance evaluation of the ultrasonic process 
using the ANN-LM model

Because hormones are carcinogenic, their removal 
from wastewater is crucial for the health of aquatic spe-
cies and people. The ultrasonic technique is one of the 

cost-effective, by-product-free processes. In this work, the 
experimental findings of this approach were modeled using 
the ANN model, and Figs. 6 and 7 illustrate the ANN-based 
hormone removal parameters. The plotted levels indicate 
changes in hormone removal efficiency and are plotted 
better to understand the effect of the studied removal 
efficiency parameters. According to Figs. 6A and 7A, hor-
mone removal rate was related to pH nonlinearly, both at 
low and high reaction times, and the removal efficiency 
has increased by increasing pH. pH had a more significant 
effect on removal efficiency than reaction time, and the 
impact of time was negligible. Figs. 6B and 7B show the 
effects of power density were almost nonlinear on hormone 
removal efficiency; power density in values less than 1 W/
mL has a great effect on the removal efficiency and increases 
the removal efficiency, but at values above 1 W/mL had no 
considerable effect on hormone removal. By Figs. 6C and 
7C, both power intensity and time, are nonlinear, such that 
the removal rate was increased by increasing the amount of 
power intensity and reaction time, as stated in the article 
by Suri et al. [19]. Furthermore, Fig. 6D, it is shown that 
reaction time was more effective against frequency. The 
frequency was linear at high times and had a non-linear 
effect at low times, and with increasing frequency, the 
removal efficiency of E1 increased. By Fig. 7D, reaction time 
was more effective against frequency, and with increasing 
frequency, the removal efficiency of E2 increased.

Therefore, the most critical parameters to remove 
hormones in this method are pH and power density. As 
the initial pH increases, the effect of reducing hormones 
increases due to the rise in the production of hydroxyl rad-
icals. A similar observation was made by other studies [27].

5. Conclusion

In this study, the effects of pH, frequency, power den-
sity, power intensity, and duration on the ultrasonic meth-
od’s ability to remove steroid hormones from wastewater 
were examined and modeled using an ANN model. A net-
work with a 5:12:1 structure and LM training algorithm 
was obtained as the optimal network. This network was 
used as a fitness function in the genetic algorithm to reach 
the optimal point. GA results showed that at pH 8.95 and 
power intensity 14.75 W/cm2, power density 1.26 W/mL, 
and frequency 47.79 kHz for hormone E1 and at pH 9.71, 
power intensity 33.13 W/cm2, power density 0.6 W/mL and 

Table 7
Transfer functions investigation

LM algorithmTransfer function in 
the output layer

Transfer function in 
the hidden layer

ANN  
topology MSER (all data)R (test data)

0.0007740.9920.996Tan-sigmoidTan-sigmoid5:12:1
0.000630.9970.995PurelinTan-sigmoid5:12:1
0.062830.9210.916Log-sigmoidLog-sigmoid5:12:1
0.0006300.9940.988PurelinLog-sigmoid5:12:1
0.0061220.9400.940PurelinPurelin5:12:1
0.0403230.9190.931Log-sigmoidTan-sigmoid5:12:1

Fig. 2. Schematic of reactor.
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Fig. 3. Regression and MSE error graph of the ANN model.
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Fig. 4. Tornado graph for sensitivity analysis by standard 
regression method for (A) E1 and (B) E2.

 

(A)

(b)

Fig. 5. Genetic algorithm results for: (A) minimum remaining 
percentage of hormone E1 and (B) minimum remaining percent-
age of hormone E2.

Fig. 6. ANN response surface for (A) pH vs. removal rate of E1, (B) power density vs. removal rate of E1, (C) power intensity vs. 
removal rate of E1, and (D) frequency vs. removal rate of E1.
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frequency 42.13 kHz for hormone E2, we reach the highest 
removal efficiency by ultrasonic method.

Finally, sensitivity analysis was performed with 
Spearman correlation coefficient and 99% response level and 
showed that pH is the most influential parameter in hormone 
removal efficiency.

The results showed that the hormones could be effec-
tively eliminated via ultrasound, significantly when enhanc-
ing pH by about 9.
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