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a b s t r a c t
Our study aims to prepare a novel composite adsorbent via physical mixing process by using 
synthesized alumina from alum with acid activated clay (Alumina/H+Clay) and estimate their effi-
ciency for malachite green dye (MG) adsorption. The characterization of Alumina/H+Clay com-
posite was performed using various analyses techniques such as XRD, FT-IR, SEM, surface area 
analysis (BET), and pHpzc. Furthermore, the effects of pH dye solution, adsorbent mass, initial 
concentration, and contact time on the adsorption process were investigated. Our results demon-
strated that the prepared Alumina/H+Clay composite is a mesoporous material with a pore volume 
and specific surface area of 0.58 cm3/g, 89.02 m2/g respectively. The experimental data fit well with 
Langmuir isotherm with a maximum adsorption capacity of 243.06 mg/g. In addition, the kinetic 
parameters showed that the adsorption of MG dye followed the pseudo-second-order model. The 
obtained thermodynamic parameters indicated that the adsorption occurred spontaneously at dif-
ferent temperatures and the process was endothermic. Therefore, this study demonstrated that pre-
pared Alumina/H+Clay composite is an excellent adsorbent for MG dye and it could be used as an 
effective and promising adsorbent material for dyes.

Keywords:  Adsorption; Malachite green; cationic dye; Wastewater; Composite material; Alumina/
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1. Introduction

The industrial sector witnessed recently an inten-
sive demand of various types of dyes as direct, reactive, 
acid, basic, disperse, vat, and sulfur dyes [1]. Indeed, 
100,000 types of dyes and pigments are produced, and over 
7 × 105 tons of synthetic dyes are annually supplied color 
processing market [2]. However, the aquatic environment 
is receiving about 7% of the effluents from the dye man-
ufacturing, 8% from the paint industry and tannery, 10% 

from the paper and pulp industry, 21% from the dyeing 
industry, and a significant ratio from the textile industry 
estimated as 54% [3]. In addition, these dye effluents are 
contaminated with high levels of hazardous chemicals 
and their auxiliary products.

Among dyes, malachite green (MG), a triphenylmeth-
ane cationic dye used in the dyeing process (leather, wool, 
and silk), food processing, and treatment for fungal, and 
protozoal infections [4]. However, synthetic dyes can result 
in significant health issues, including child hyperactivity, 



237F.Z. Soufal et al. / Desalination and Water Treatment 273 (2022) 236–245

allergies, and skin cancer [5]. In particular, various concerns 
have been demonstrated regarding the toxicity of mala-
chite green dye as teratogenic and carcinogenic effects, 
which can threaten human life [6,7]. Besides, the discharge 
of malachite green dye in the hydrosphere decreases 
photosynthesis and affects aquatic plants [8].

It has been reported that the removal of malachite green 
has been explored by various technologies such as biologi-
cal treatment (fungal species, bioluminescent bacterium) 
[9,10], chemical treatment (photocatalytic degradation [11], 
electrochemical oxidation [12]), and physical treatment 
(membrane filtration [13], ion exchange [14], and adsorp-
tion process [15]). Considering this, the adsorption process 
has been regarded as an effective, and suitable method for 
the removal of various pollutants owing to the low energy 
cost, and simple equipment manipulation [16]. In addi-
tion, the adsorption removal technology involves no unde-
sirable toxic effects on the aquatic environment, and the 
adsorbent can be reused for further cycles [17,18].

Various kinds of adsorbents have been applied for 
malachite green dye removal as modified pine cone [19], 
Curcuma caesia-based activated carbon [20], synthetic hema-
tite iron oxide nanoparticles [21], natural red clay [22], 
modified nano-γ-alumina [23], and graphene [24].

Among the listed adsorbents; alumina was recognized 
as a promising adsorbent with no toxicity, low cost, and 
excellent physicochemical properties such as high thermal 
stability and high specific surface area [25,26]. For instance, 
the adsorption of methylene blue and crystal violet dyes 
onto synthesized alumina via precipitation and calcination 
method using aluminum waste (51.81 and 31.92 mg/g respec-
tively) [27], commercial alumina for eriochrome black T 
and malachite green dye (45 and 13.49 mg/g respectively) 
[28,29], and synthesized alumina via sol–gel for reactive yel-
low and orange G (25 and 93.3 mg/g respectively) [30,31]. 
However, different kinds of synthesized alumina adsor-
bents have shown weak efficiency for various pollutants. 
Thus, in order to enhance their structural characteristics 
and adsorption performance, alumina composite adsor-
bents have received considerable attention from researchers 
as synthesized alumina-zirconia composite for methylene 
blue and congo red [32], prepared Al2O3/zeolite compos-
ite for CO molecules [33], γ-alumina and silica amorphous 
mixture for methylene blue [34], alumina-onion skin com-
posite for heavy metals [35] and alumina/nano-graphite 
composite for chromium (III) and chromium (VI) ions [36].

The objective of our study is the preparation of compos-
ite adsorbent via a physical mixing process by using syn-
thesized alumina (from alum) with acid activated local clay. 
Different analysis techniques were performed for the char-
acterization of the adsorbent such as XRD, FT-IR, BET, SEM, 
and pHPZC. Furthermore, the performance of the adsorp-
tion process of malachite green dye was analyzed using 
kinetic, adsorption isotherm, and thermodynamic studies.

2. Materials and methods

2.1. Materials

Malachite green dye was obtained from Merck®. 
Hydrochloric acid (HCl) and Sodium hydroxide (NaOH) 
were purchased from Sigma-Aldrich®.

Clay sample was collected in Maghnia in the west of 
Algeria as local raw material, and their chemical composition 
is presented in Table 1 [37].

2.2. Preparation of Alumina/H+Clay composite

Alumina was prepared via the thermal decomposition 
method [25]. Small pieces of alum sample (Al2(SO4)3·18H2O) 
were grinded with a crusher and put in a muffle furnace 
at 1,000°C for 15 min.

The clay sample was washed with distilled water, 
crushed for 20 min, and dried for 2 h at 105°C. Acid acti-
vated clay was prepared using the protocol reported in 
a previous study [38]. In brief, 20 g of clay was added to a 
flask containing 200 mL of H2SO4 (0.25M) and stirred for 
3 h under refluxed heating. Thereafter, the activated clay 
(H+Clay) was washed several times with distilled water to 
eliminate SO4

2–, and dried at 105°C.
Alumina/H+Clay composite adsorbent was prepared 

via the physical mixing process [39] following the mod-
ified method of [40]. Briefly, acid activated clay/25 wt.% 
alumina were mixed with a magnetic stirrer (1,200 rpm) in 
a flask containing 100 mL of distilled water for 3 h at 25°C. 
Thereafter, the suspension was filtered and dried at 105°C 
overnight. Finally, the obtained composite was grinded 
for 20 min, sieved and stored in a desiccator until used.

2.3. Alumina/H+Clay composite characterization

The X-ray diffraction (XRD) analysis was performed 
using (Goniometer MiniFlex 300/600 diffracted beam mono: 
Bent – Detector: SC-70) diffractometer with measurement 
condition of (λ Cu Kα = 1.54 radiation 40 Kv, 15 mA). The 
surface functional groups of Alumina/H+Clay compos-
ite were detected using (Alpha-Bruker) FT-IR. The surface 
area measurement (BET), pore size, and pore volume were 
conducted from the adsorption–desorption of N2 at 77 K 
using (Micromeritics 3Flex). The morphology surface of 
Alumina/H+Clay composite was observed using scanning 
electron microscopy (SEM) (Quanta FEG250). The pH value 
of point zero charge (pHPZC) was determined as reported 
in the common ‘drift method’ [41].

2.4. Adsorption experiment

The batch experiment system was performed for 
MG dye adsorption with different concentrations (50–
450 mg/L). In an Erlenmeyer flask containing 50 mL of 

Table 1
Composition (wt.%) of the used raw clay

Composition (wt.%) SiO2 Al2O3 Fe2O3 MgO K2O TiO2 MnO SO3 Na2O P2O5 CaO3

Raw clay 69.71 14.67 1.16 1.07 0.79 0.177 0.098 0.91 0.5 0.013 0.3
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MG dye solution, 50 mg of the adsorbent was added and 
shaken at 10 rpm at 25°C. 1 mL of dye was withdrawn from 
the flask at different time intervals (0–5 h), diluted, and 
centrifuged for 5 min at 4,200 rpm. The dye concentration 
was determined by measuring the solution absorption at 
λmax of 617 nm using a (Hitachi U-3000) UV-visible spec-
trophotometer. The pH of the initial solution of MG dye 
was adjusted from 2 to 7 by adding 0.1 M HCl or 0.1 M 
NaOH solution. The thermodynamic study was performed 
at 298, 303, and 308 K.

3. Results and discussion

3.1. Adsorbent characterization

The XRD analysis of Alumina/H+Clay, H+Clay, and alu-
mina are displayed in Fig. S1. The XRD pattern of alumina 
highlighted an amorphous structure. Besides, the peaks 
observed at 2θ = 37°, 45° and, 67° classified the alumina 
sample as γ-alumina [30,42]. For the XRD pattern of H+Clay 
composite, the main peaks were observed at 2θ = 8°, 20°, 26°, 
corresponding to the montmorillonite and the quartz phase 
[43]. For the XRD pattern of Alumina/H+Clay composite, 
it was observed a decrease in the intensity of the charac-
teristic peaks of alumina due to the deposition of H+Clay.

Fig. 1 presents the FT-IR spectra of H+Clay, alumina, and 
Alumina/H+Clay composite before and after adsorption. 
H+Clay spectrum showed absorption bands at around 778 
and 1,040 cm−1 that attributed to Si–O as the main functional 
group presented in clay [44]. Besides, the peaks observed 

at 1,663 and 3,394 cm−1 are attributed to O–H stretching 
vibration and H–O–H deformation vibration of water mol-
ecules respectively [43]. For alumina spectrum, the absorp-
tion bands located near 3,422 and 511 cm−1 are assigned to 
the bending vibration of the –OH group and Al–O stretch-
ing vibration respectively [41]. Regarding the spectrum of 
Alumina/H+Clay composite, new absorption bands were 
appeared after the adsorption process. Indeed, the peaks 
observed at around 1,372 and 1,587 cm−1, corresponding to 
the C=C stretching vibration of the benzene ring and C–C 
aromatic stretching presented in MG dye respectively [27].

The textural properties and the nitrogen sorption/desorp-
tion isotherms of Alumina/H+Clay composite and alumina 
are presented in Fig. 2. Based on the IUPAC classification 
of adsorption isotherm, Alumina/H+Clay composite and 
alumina were belonged to type-IV isotherms with H-3 hys-
teresis loop, suggesting that both samples had a variety of 
pore diameters [45,46]. Moreover, the pore diameter revealed 
that Alumina/H+Clay composite and alumina were classified 
as mesoporous materials [47]. The BET analysis showed a 
decrease of the specific surface area from 168 to 89.02 m2/g 
for alumina and Alumina/H+Clay composite, respec-
tively. Similar findings were observed by other composite 
adsorbents demonstrated in the literature as clay/alumina 
composite [48], bentonite/γ-alumina composite [40], and 
aluminium/modified carbon [49]. The decrease in the spe-
cific surface area could be related to the occupation of alu-
mina pores with H+Clay added and incorporated on their  
surface.

The SEM images of Alumina/H+Clay composite before 
and after MG dye adsorption are presented in Fig. S2. 
Our results indicated that the prepared Alumina/H+Clay 
composite had a heterogeneous and porous surface mor-
phology (Fig. S2a). After the adsorption process (Fig. S2a), 
it was observed a change in the surface of the compos-
ite, indicating the adsorption of MG dye molecules onto 
Alumina/H+Clay surface.

The charge surface of the adsorbent is one of the sig-
nificant parameters affecting the adsorption mechanism 
[50]. The pHPZC of Alumina/H+Clay composite is presented 
in Fig. 4. The pHPZC value of Alumina/H+Clay composite 
was found to be 7. Consequently, the adsorbent exhibited 

 
Fig. 1. FT-IR spectra of (a) H+Clay, (b) alumina, (c) Alumina/
H+Clay composite before and (d) after MG dye adsorption.  

Fig. 2. Adsorption–desorption isotherms of alumina and 
Alumina/H+Clay composite.
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dominantly a positive charge surface at pH < pHPZC and a 
negative charge at pH > pHPZC. Similarly, the pHPZC of other 
adsorbents was found to be close to that of the Alumina/
H+Clay composite such as xanthan gum/SiO2 composite 
(pHPZC = 6.2) [51], modified graphene (pHPZC = 7.33) [52] and 
fig opuntia derived activated carbon (pHPZC = 7.54) [53].

3.2. Adsorption study

To evaluate the removal efficiency of MG dye, a pri-
mary adsorption test was performed (under similar con-
ditions) using raw clay, H+Clay, alumina, and Alumina/
H+Clay composite. As shown in Fig. 3, MG dye removal 
efficiency using Alumina/H+Clay composite exhibited a 
significant increase and reached a rapid equilibrium in the 
first 10 min, with a dye removal efficiency of 91.18% fol-
lowed by acid activated clay (84.92%) and raw clay (79.12%). 
However, alumina adsorbent showed only 46.49% of MG 
dye removal percentage and reached equilibrium after 2 h. 
These primary results suggested that the prepared Alumina/
H+Clay composite had a higher affinity with MG dye.

The pH value of dye solution is a notable parameter 
that affects the adsorption process [54]. Fig. 4 presents the 
pH effect on the adsorption capacity of MG dye solution 
onto Alumina/H+Clay composite. Since MG dye changes to 
a carbinol base at alkaline conditions (colorless) and pro-
tonated to MGH+ under acidic conditions (cyan) [55], the 
pH effect was assessed in initial pH dye solution varies 
from 2 to 7. As shown in Fig. 4, the pHPZC of the Alumina/
H+Clay composite was 7 indicating that the adsorbent 
exhibited a positive charge surface at pH < pHPZC. Besides, 
MG dye is positively charged due to the presence of the 
cationic –NR2 groups. This means that both the adsorbent 
and adsorbate were positively charged. However, Alumina/
H+Clay composite exhibited a maximal adsorption capacity 
within the variation of pH dye solution. Similar behavior 
of MG dye was demonstrated by other scholars where the 
adsorption capacity of MG dye onto different adsorbents 
did not affect by the pH dye solution as apple seed/ben-
tonite composite adsorbent, ball clay/manganese dioxide 

adsorbent, and polystyrene waste adsorbent [56–58]. This 
finding could be explained by the presence of other import-
ant contributions in the adsorption mechanism such 
as pore-filling which is the most common mechanism 
for metal oxide composites adsorbent [25].

The effect of the adsorbent mass of Alumina/H+Clay on 
the adsorption capacity and MG dye removal is presented 
in Fig. 5. The results indicated that the MG dye removal 
rose sharply as the amount of the adsorbent increased from 
25 to 50 mg. This can be related to the availability of active 
sites on the porous surface of the adsorbent [59]. Regarding 
the adsorption capacity of Alumina/H+Clay composite, it 
was observed a decrease from 164.6 to 24.94 mg/g with an 
increase of the adsorbent mass from 25 to 200 mg respec-
tively. These phenomena can be explained by the lack of 
MG dye molecules in the solution at a higher adsorbent 
amount [60]. Therefore, 50 mg was selected as the optimum 
adsorbent amount.

The effect of contact time on the adsorption capacity of 
MG dye adsorption onto Alumina/H+Clay composite is pre-
sented in Fig. 6. The results showed a marked increase of 

 
Fig. 3. Removal efficiency of MG dye using (a) Alumina/
H+Clay composite, (b) H+Clay, raw clay (c) and (d) alumina 
(100 mg/L, 0.1 g, 50 mL and 25°C).

Fig. 5. Effect of Alumina/H+Clay mass on the adsorption of 
MG dye (100 mg/L, 0.05–0.2 g, 50 mL and 25°C).

 

Fig. 4. (a) Effect of the pH dye solution on the adsorption of 
MG dye (100 mg/L, 0.1 g, 50 mL and 25°C) and (b) pHpzc of 
Alumina/H+Clay.
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the adsorption capacity in the first hour with approximately 
70% of MG dye removal. Thereafter, a slight increase was 
recorded, and the adsorption process reached equilibrium 
at around 3h of contact time. This is could be explained by 
the availability of many vacant adsorption sites on the sur-
face of Alumina/H+Clay composite at the initial contact time, 
and after the saturation of the empty sites by MG dye mol-
ecules, the adsorption rate decreased until the equilibrium 
was achieved [61,62]. Furthermore, the adsorption capac-
ity elevated significantly from 46.32 to 234 mg/g with the 
increase of the initial concentration of MG dye from 50 to 
300 mg/L respectively.

3.3. Adsorption kinetic study

The adsorption kinetic study plays a significant role in 
identifying and interpreting the kinetic data for the pro-
cess of dye adsorption. For the adsorption of MG dye onto 
Alumina/H+Clay composite, we applied the non-linear 
forms of the pseudo-first-order model (1), and pseudo- 
second-order model (2) [63]:
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where qe, qt (mg/g) are the adsorption capacity at time t, 
and at equilibrium respectively, t (min) is the time, K1, and 
K2 are the rate constants of pseudo-first-order, and pseudo- 
second-order models respectively.

The fitted curves and the kinetic parameters are pre-
sented in Fig. 7, and Table 2, respectively. The results pointed 
out that the pseudo-second-order model was found to pro-
vide a better fit with a higher correlation coefficient (R2) 
compared to the pseudo-first-order model. Consequently, 
this consistency suggested that both the physisorption and 
chemisorption control the adsorption process of MG dye 
onto Alumina/H+Clay composite [64].

3.4. Adsorption isotherm

The adsorption isotherms study is a significant step for 
interpreting the dye adsorption mechanism onto the adsor-
bent and estimating the maximum adsorption capacity. 
Fig. 8 presents the adsorption isotherm of MG dye using 
Alumina/H+Clay composite with initial concentrations 
(50 and 450 mg/L). Our results showed that the isotherm  
was an L-type isotherm shape, revealing that the Van Der 
Waals forces were involved in the adsorption mechanism [65].

For exploring the adsorption process of MG dye onto 
Alumina/H+Clay composite, we applied the non-linear 
forms of the adsorption isotherms of Langmuir (3) and 
Freundlich models (4) [66]:
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where KL (L/mg), Kf ((mg/g)/(mg/L)n), are the constants of 
Langmuir, and Freundlich models respectively, Ce (mg/L) 
is the equilibrium concentration of MG dye, qm (mg/g) is 
the maximum adsorption capacity, qe (mg/g) is equilibrium 
adsorption capacity, C0 is the highest initial MG dye con-
centration (mg/L), RL is the separation factor, and 1/n is 
the intensity of adsorption constant.

Table 3 summarizes the calculated parameters of 
Langmuir and Freundlich isotherms. Our data indicated 
that the adsorption process of MG dye onto Alumina/
H+Clay composite fitted better to the Freundlich model 
(R2 = 0.972) than the Langmuir model (R2 = 0.925). Moreover, 
the value of the 1/nf (0 < 1/4.66 < 1) confirmed a favorable 
adsorption process of MG dye signifying the multi-layer 
adsorption and heterogeneity surface [67]. The maximum 
adsorption capacity of Alumina/H+Clay composite achieved 
243.06 mg/g, demonstrating a higher adsorption capacity 
than other adsorbents used for MG dye (Table 4) [68–72]. 
Correspondingly, the prepared Alumina/H+Clay com-
posite can serve as an effective and promising adsorbent 
for MG dye.

3.5. Thermodynamic study

The thermodynamic study was evaluated at different 
temperatures (from 298 to 318 K) for the adsorption of MG 
dye onto Alumina/H+Clay composite. The thermodynamic 
parameters: Gibbs free energy (ΔG°), enthalpy (ΔH°), and 
entropy change (ΔS°), were calculated according to the 
following laws [73]:

�G RT Kc� � � ln  (5)

K
q
Cc
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e

=  (6)

lnK G RT S H
RTc � � � � � �� �
�  (7)

 

Fig. 6. Effect of contact time on the adsorption capacity of MG 
dye (0.05 g, 50 mL and 25°C).
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where R (8.314 J/mol·K) is the universal gas constant, 
Kc (mg/L) is the concentration of compound at equilibrium, 
qe (mg/g) is the amount adsorbed at equilibrium at a par-
ticular temperature and T (K) is the solution temperature.

The thermodynamic parameters are listed in Table 5. 
As revealed in Table 5, the negative values of ΔG° (–22.29, 

–23.29, and –23.7) pointed out that the adsorption pro-
cess of MG dye was spontaneous. Furthermore, the pos-
itive value of ΔH° (37.25 kJ/ mol) demonstrated that the 
process was endothermic, and the adsorption process of 

 
Fig. 7. Kinetic models fitting for MG dye adsorption onto Alumina/H+Clay for (a) 50 mg/L, (b) 100 mg/L, (c) 200 mg/L, 
and (d) 300 mg/L.

Table 2
Kinetic parameters of MG dye adsorption onto Alumina/H+Clay

Models Unit Concentration

50 mg/L 100 mg/L 200 mg/L 300 mg/L

Pseudo-first-order

Qe (cal) Qe(exp) 45.075 90.311 162.02 223.17
Qe (exp) (mg/g) 46.32 97.4 167 234
K1 (min–1) 0.221 0.141 0.059 0.04
R2 0.997 0.966 0.891 0.793

Pseudo-second-order

Qe (cal) (mg/g) 45.761 94.23 172.99 243.15
Qe (exp) (mg/g) 46.32 97.4 167 234
K2 (g/mg min) 0.015 0.0026 0.0005 0.0002
R2 0.999 0.989 0.971 0.993

 
Fig. 8. Isotherm models fitting for MG dye adsorption onto 
Alumina/H+Clay.
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MG dye onto Alumina/H+Clay composite was mainly phy-
sisorption [74]. The positive values ΔS° revealed a random-
ness rising at the adsorbent–adsorbate interface during the 
adsorption process of MG dye [65].

3.6. Adsorbent regeneration study

To evaluate the reusability of Alumina/H+Clay compos-
ite for MG dye removal, a regeneration study was performed 
using a mixture of water and ethanol for four successive 
cycles (C = 100 mg/L). As displayed in Fig. 9, the results 
indicated that Alumina/H+Clay composite highlights 
good reusability even after four desorption cycles, and 
the removal efficiency of MG dye was slightly decreased.

3.7. Adsorption mechanism

As previously highlighted in the FT-IR spectra of 
Alumina/H+Clay before and after adsorption (Fig. 1), new 
peaks were observed at around 1,372 and 1,587 cm−1, indi-
cating the adsorption of MG dye. Besides, It was observed 
the stretching vibration at 3,420 cm−1 of the hydroxyl 
group (–OH) of Alumina/H+Clay composite was weak-
ened, revealing hydrogen bonding between the nitrogen 
atoms of MG dye molecules and Alumina/H+Clay [75]. 
In addition, the contribution of van der Waals force and 
pores filling in the adsorption process of basic dyes has 
been demonstrated by various scholars as the adsorption 
of crystal violet [74], methylene green [76], methyl blue 
(MB), and basic fuchsin [77]. Taken together, the adsorp-
tion mechanism of MG dye onto Alumina/H+Clay could 
be explained by the combination of many contributors 
including pore filling, van der Waals force, and hydrogen  
bondings.

4. Conclusion

Alumina/H+Clay composite was prepared using syn-
thesized alumina and modified clay applied for MG dye 
adsorption. The main findings were:

• The textual analysis showed that the Alumina/H+Clay 
composite is a porous material with a specific surface 
area of 89.02 m2/g.

• The optimum parameters for the adsorption of MG dye 
into alumina/H+-clay were: 3 h of contact time, 25°C 
and, 50 mg of adsorbent.

• The kinetic study demonstrated that the pseudo- 
second-order model described well the experimental 
data.

• The adsorption capacity of Alumina/H+Clay for MG 
dye was 243.06 mg/g at 25°C.

 
Fig. 9. Reusability of Alumina/H+Clay composite in MG dye 
adsorption.

Table 3
Isotherm parameters of MG dye onto Alumina/H+Clay compos-
ite

Langmuir Freundlich

Qm (cal) (mg/g) 229.94 Kf (mg/g)/(mg/L)n 82.58
Qm (exp) (mg/g) 243.06
KL (L/mg) 0.267 n 4.66
RL 0.012–0.069
R2 0.925 R2 0.972

Table 4
Comparison of the maximum adsorption capacity of MG dye with other composite adsorbents

Adsorbents Maximum adsorption capacity (mg/g) Reference

Zeolite/reduced graphene oxide 48.6 [68]
Magnetic metal organic frameworks 113.67 [69]
Fe2O3/Activated carbon 36.36 [70]
Commercial activated carbon  
(Coconut-AC, Coal-AC, Apricot-AC, Peach-AC)

83, 74.91, 69.59, 69.93 [71]

Activated carbon 27 [72]
Alumina/H+Clay 243.06 In this study

Table 5
Thermodynamic parameters of MG dye adsorption onto 
Alumina/H+Clay composite.

T (K) ΔG (kJ/mol) ΔH (kJ/mol) ΔS (J/mol·K)

273 –22.29 37.25 14.68
303 –23.29
313 –23.7



243F.Z. Soufal et al. / Desalination and Water Treatment 273 (2022) 236–245

• The thermodynamic parameters stated that the 
adsorption process of MG dye was spontaneous and 
endothermic.

Therefore, the prepared Alumina/H+Clay composite 
could be considered an effective and promising adsorbent 
for cationic dyes.
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