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a b s t r a c t
Potable and urban waters, which is a vital resource, constitute the most basic research area of today. 
In the current study, a newly optimized co-precipitation method using bismuth(III) hydroxide has 
been examined for quantitative separation and preconcentration of iron(III), chromium(III), cop-
per(II), cobalt(II), manganese(II), nickel(II), and cadmium(II) ions from water samples. Analytes 
were co-precipitated and after dissolving analyzed by micro-sample injection system flame atomic 
absorption spectrophotometry. The influence of variables such as sample volume, sodium hydrox-
ide concentration, bismuth(III) concentration, matrix effects, etc. were investigated. The theoretical 
enrichment factor of the optimized method is 50. The precisions of within-day and intra-day for 
the analyte elements working real water samples were found in the range of 4.1–4.5. The limit of 
detections for the analyte elements were in the range of 0.8–9.5 μg/L. The limit of quantification of 
iron(III), chromium(III), copper(II), cobalt(II), manganese(II), nickel(II), and cadmium(II) ions were 
calculated to be 18.0, 21.0, 7.6, 6.8, 13.0, 27.0, and 1.1 μg/L, respectively. The analysis of the BCR-
715 standard reference water sample demonstrated the procedure’s accuracy, and the method 
was successfully applied to two different water samples and nine different plants as a real sample.

Keywords:  Heavy metals; Co-precipitation; Bismuth(III) hydroxide; Waters; Atomic absorption 
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1. Introduction

Heavy metal pollution is one of the world’s most seri-
ous environmental problems and the determination of these 
elements especially in drinking water, urban and industrial 
wastewater is extremely important due to public health 
studies. The interaction and accumulation of heavy metals 
are harmful to plants and animals, that creates a risk factor 
for humans with their transfer and accumulation in the food 
chain [1–3]. While iron, copper, and zinc occur together in 
water and soil samples. These trace metals are absorbed by 
plants from the soil and water [4]. Plants have been used 
by humans to prevent diseases, maintain health or cure 
diseases since ages [5,6]. The essential elemental content of 

herbals depends on the properties of the soil and their abil-
ity of accumulation elements. However, atmospheric dusts, 
rainfall, fertilizers and wastewater can cause contamination 
in plants [7,8]. Heavy metals are plant component mole-
cules that have biological activity in human metabolism as 
either essential or harmful agents [8–10]. Low levels of iron, 
zinc, copper, and manganese are essential for good health, 
but some metal ions, such as cadmium, lead, arsenic, and 
mercury, have hazardous effects on our bodies’ biochemical 
responses [11–14]. The restricted limit concentrations for Cr, 
Cd and Pb in drinking water are 0.1, 5 and 10 μg/L, respec-
tively [14]. According to Commission Regulation [15] No 
1881/2006 and No 629/2008, maximum allowable levels of 
lead and cadmium in leafy vegetables are 0.3 and 0.05 mg/kg.
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Water and plants contain heavy metal ions in a wide 
range of concentration, the determination of these ions is 
important for the control of human health [12,13,16]. Flame 
atomic absorption spectrometry (FAAS) is greatly employed 
for the determination of trace metals owing to its high ana-
lytical performance and low cost [17–20]. Most of the AAS 
combined analytical techniques are recommended to expand 
the problems caused by high concentrations of interfer-
ing matrix components in real samples and the require-
ment for high instrument detection limits [4,20,21]. For 
this purpose an effective separation and enrichment have 
been frequently carried out using liquid phase extraction 
[1,22,23], solid phase extraction [24–33], membrane filtration 
[17,34], and cloud point extraction [35–38].

Another important separation-preconcentration method 
that draws attention as it is a simple, fast and green tech-
nique is co-precipitation. In trace metal ion co-precipitation 
experiments, both organic and inorganic precipitants can be 
utilized [39–43]. Metal hydroxides are the preferred choice 
for co-precipitation of trace metal ions due to their high 
recovery and separation. Various metal hydroxides includ-
ing lutetium, praseodymium, holmium, aluminum, cerium, 
dysprosium, europium, magnesium, erbium, samarium, 
scandium and zirconium have been used to separate and 
preconcentrate trace elements from water, food, plant and 
environmental samples previous to their determinations 
[44–57].

Bismuth(III) hydroxide is another important metal 
hydroxide co-precipitant. However using as co-precipitant is 
limited to a few works like determination of trace metals in 
vanadium-aluminium alloy and vanadium metal [58], lead 
and iron in high-purity zinc metal [59], mercury(II) from 
an aquatic environment [60] and soils and sediments [61].

A developed co-precipitation method using Bi(III) 
hydroxide was applied for the separation/enrichment 
and determination of iron(III), copper(II), chromium(III), 
cobalt(II), manganese(II), cadmium(II) and nickel(II) ions 
in water samples. In addition, it was also tested for some 
plant samples. The parameters such as bismuth(III) concen-
tration, matrix effects, NaOH concentration, and sample 
volume have been optimized for the quantitative co-pre-
cipitation method. The microsample injection system-flame 
atomic absorption spectrophotometry (MIS-FAAS) method, 
which employs bismuth as a precipitating reagent, is nota-
ble for its suitability for multi-element determination, low 
cost for routine and large-scale analysis, and speed and 
simplicity of use.

2. Materials and methods

2.1. Apparatus

Throughout this research, Perkin Elmer AAnalyst 700 
trademark FAAS with an air-acetylene burner and a deute-
rium lamp background corrector was utilized. The flame was 
created with air with a flow rate of 10 L/min and acetylene 
with a flow rate of 2.5 L/min. Absorbances were measured 
as the peak height by a microsample injection system (MIS) 
coupled with FAAS at 324.8, 248.3, 232.0, 240.7, 279.5, 228.8 
and 357.9 nm, using a spectral bandwidth of 0.7, 0.2, 0.2, 0.2, 
0.4, 0.7 and 0.7 for copper, iron, nickel, cobalt, manganese, 

cadmium and chromium, respectively. For all samples and 
calibration solutions, 100 μL aliquots were used and injected 
directly into the MIS. As previously reported, the injection 
system was connected to the nebulizer needle through a 
PTFE capillary tube with a micropipette tip [62]. WTW 720 
Digital pH Meter (Weilheim, Germany) was used to deter-
mine the pH of the aqueous phase. A centrifuge Nuve NF 
400 (Ankara, Turkey) was used to hasten the process of phase 
separation. A vortex mixer from Velp Scientifica (Milan, 
Italy) was used to dissolve the precipitate that remained 
adhered to the tube. All weighing were made with a Precisa 
XB 220 A analytical scales (±0.0001 g, Dietikon, Switzerland). 
The ultrapure water used in the studies was obtained in 
the laboratory with the reverse osmosis system Human 
Corporation Device (Seoul, Korea).

2.2. Reagents and solutions

All solutions were prepared using analytical grade 
chemicals. Ultrapure grade water with a resistivity of 
18.2 M/cm was used for prepared solutions and experi-
ments. The calibration standard and diluted model solutions 
of Fe(III), Cu(II), Cr(III), Co(III), Mn(II), Ni(II), and Cd(II) 
were prepared daily by appropriate dilutions of 1,000 mg/L 
stock solution of the respective analytes (Merck, Darmstadt, 
Germany). A Bi(III) solution (2,000 mg/L) was freshly pre-
pared by dissolving Bi(NO3)3 (Merck, Darmstadt, Germany) 
0.095 g in 2 mL of HNO3 (Merck, Darmstadt, Germany) and 
diluting to 25 mL with water. Sodium hydroxide (Sigma-
Aldrich, Steinheim, Germany) was utilized for preparation 
of 1 mol/L NaOH. BCR-715 wastewater certified reference 
material was furnished by European Commission, Joint 
Research Centre, Institute for Reference Materials and 
Measurements (EC-JRC-IRMM), Geel, Belgium.

2.3. Co-precipitation procedure

The process was optimized with model solutions before 
co-precipitation of analyte ions from real samples. For that 
purpose, 250 μL of 2,000 mg/L bismuth(III) solution was 
added to 10.0 mL of solution containing 5 μg Cd(II), 10 μg 
Fe(III), Cu(II), Co(III), Mn(II), Ni(II), and 20 μg Cr(III) ions. 
The NaOH concentration was then adjusted to 0.1 mol/L 
with the addition of 1.0 mol/L NaOH for the purpose of col-
lect the analytes on bismuth(III) hydroxide. The tube was 
left for a few seconds and the precipitate was centrifuged 
at 4,000 rpm for 3 min. The supernatant was eliminated 
completely. 1 mL of 2 mol/L HNO3 was used to dissolve 
the precipitate that remained stuck to the tube. A microsa-
mple injection technique combined with FAAS was used to 
quantify the analyte ions in this solution.

2.4. Real samples analysis

The co-precipitation technique was implemented for 
determination of copper, iron, nickel, cobalt, manganese, 
cadmium and chromium in the followings samples: drink-
ing water from Pamukkale University, with the assistance 
of the Denizli environment quality laboratory, industrial 
effluent was sampled from an organized industrial zone in 
Denizli, and herbs were obtained in Denizli, Turkey, from 
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several gardens. The herbal samples were dried for 6 h at 
110°C. The dried samples were homogenized with an agate 
homogenizer and stored in plastic bottles at room tem-
perature until analysis. The application of the optimized 
procedure is demonstrated using BCR-715 wastewater 
certified reference material.

For analysis of liquid samples, a fifty millilitre of water 
samples was filtered through a 0.45 mm cellulose nitrate 
membrane, then were placed into a centrifugation tube and 
co-precipitation method was applied. Plant samples were 
dissolved by adding 15 mL of aqua regia to 0.5 g sample 
according to the procedure suggested by Divrikli et al. [8], 
and the solution was evaporated until dryness was twice. 
The residue was diluted with 45 mL of ultrapure water. The 
enrichment technique was used on the 50 mL final solution 
after the suspension had been filtered through blue band 
filter paper and washed with ultrapure water. Analytes 
taken to a final volume of 1.0 mL were determined by  
MIS-FAAS.

3. Results and discussion

In real samples, it is difficult to precipitate elements in 
trace concentrations by conventional methods because they 
form colloidal or small amounts of the precipitate. The devel-
oped method is based on the co-precipitation of trace ele-
ments with bismuth hydroxide. The influence of analytical 
parameters such as bismuth(III) concentration and NaOH 
concentration on the co-precipitation efficiency of analyte 
ions were investigated by preparing model solutions. In order 
to prevent the matrix effect that may occur in FAAS, studies 
were started with a low amount of Bi(III) and continued by 
increasing it. Analyte absorbances were obtained close to 
each other and at approximate values up to 1.5 mg Bi3+.

3.1. Effect of NaOH concentration

The target trace metal ions were enriched using bismuth 
hydroxides as a co-precipitant. Since the precipitation of 
bismuth(III) ion and together trace elements as hydroxides 

depends on the base concentration of the aquatic medium, 
the quantitative recovery values for the co-precipitation of 
the analytes were investigated by studying different sodium 
hydroxide concentrations. The amount of Bi(III) added 
to the model solutions was 2 mg. The effect of NaOH was 
worked by varying it in the range of 0.0025–1.0 mol/L in a 
10 mL model solution containing 5–20 μg of trace metal 
ions. The recovery values obtained for analytes without 
using NaOH were below 40%. In the NaOH concentration 
range of 0.1–1.0 mol/L, the recoveries of the investigated 
metals were greater than 90% (Fig. 1). All further works 
were performed at NaOH 0.1 mol/L.

3.2. Effect of Bi(III) amount as carrier element

The effect of bismuth amount on the quantitative pre-
cipitation of analytes at 0.1 mol/L NaOH was evaluated in 
the range 0.0025–4 mg on the spiked sample. Without bis-
muth(III), analyte ion recoveries were less than 44%. The 
recoveries for analyte ions were over 95% in the 0.25–1.5 mg 
bismuth(III) amount range (Fig. 2). It was thought that 
chromium(III), manganese(II), nickel(II) and cadmium(II) 
ions form a stable second solid phase after the addition of 
2 mg and more of bismuth, but cannot hold on to the bis-
muth hydroxides precipitate. For this reason, there were 
co-precipitation losses and the recovery decreased. In all 
subsequent experiments, 0.5 mg of bismuth(III) was used 
as a carrier element.

3.3. Effect of precipitate formation time

The duration of waiting is an important parameter for 
the formation of the bismuth hydroxide precipitate and 
the completion of the co-precipitation of the analytes. The 
effect of precipitate formation time was tested for 0, 5, 10, 20 
and 30 min (Table 1). No significant changes were observed 
in the range studied and all analytes were obtained with 
quantitative recoveries. The results showed that the co-pre-
cipitation can be done without any precipitate formation 
time (at 0 min).

Fig. 1. Effect of NaOH concentration on the recoveries of analytes (n = 4).
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3.4. Effect of the centrifugation time

The effects of centrifugation time on analyte ion recov-
ery were studied in the range of 3–10 min at 4,000 rpm. 
The percent recovery values of the analytes were found 
in the range of 92–100 (Table 2). All subsequent work was 
performed with a 3 min centrifugation time.

3.5. Effect of sample volume

The sample volume is a critical parameter for co-pre-
cipitation methods because it influences the preconcentra-
tion factor value showing one of the method performance. 
So, model solutions with sample volumes ranging from 10 
to 50 mL were used to investigate the effect of sample vol-
ume on analyte ion recoveries under the optimal condi-
tions. Iron(III), chromium(III), and cadmium(II) ions were 
quantitatively (95%) recovered and copper(II), cobalt(II), 
manganese(II), and nickel(II) ions were obtained over 90% 
recovery in the studied sample volume range (Fig. 3). When 

the final volume was 1.0 mL, the preconcentration factor 
for the analytes could be achieved 50 with an initial sample 
volume of 50 mL.

3.6. Effect of matrix ions

In the extraction processes, the ions that make up the 
aquatic media components and the salt effect are important 
parameters that affect the extraction efficiency. Addition of 
salt causes an increase in the ionic strength of the solution 
and poor solubility of polar analytes in water. This occurs 
when matrix (salt) ions surround the hydration layer, reduc-
ing the solubility of the analyte in water. In the methods 
where separation is made by precipitation, the ionic strength 
of the analyzed medium or the increase of the matrix ions 
(salt effect) can facilitate the precipitation and co-precipi-
tation processes. However, interferences from matrix com-
ponents are one of the most significant restrictions in AAS 
detection of heavy metals. The impacts of various matrix 
ions on the co-precipitation efficiency of iron(III), cop-
per(II), chromium(III), cobalt(II), manganese(II), nickel(II), 

Fig. 2. Effect of bismuth(III) amount on the recoveries of analytes (n = 3).

Table 1
Effects of precipitate formation time for bismuth hydroxide 
precipitate (n = 4)

Recovery %

Analyte 0 min 5 min 10 min 20 min 30 min

Fe 99 ± 1 101 ± 1 100 ± 1 100 ± 1 99 ± 1
Cu 100 ± 1 97 ± 2 99 ± 1 98 ± 2 100 ± 1
Cr 98 ± 1 96 ± 5 98 ± 4 97 ± 1 95 ± 5
Co 99 ± 1 97 ± 3 99 ± 2 92 ± 1 99 ± 2
Mn 100 ± 1 100 ± 1 99 ± 1 101 ± 1 100 ± 1
Ni 100 ± 1 100 ± 1 100 ± 1 100 ± 1 101 ± 1
Cd 99 ± 1 95 ± 1 99 ± 1 97 ± 1 96 ± 3

Table 2
Centrifugation time effect (n = 4)

Recovery %

Analyte 3 min 5 min 10 min

Fe 95 ± 3 92 ± 2 94 ± 2
Cu 96 ± 3 93 ± 1 95 ± 2
Cr 96 ± 1 92 ± 2 97 ± 2
Co 97 ± 1 97 ± 1 97 ± 4
Mn 94 ± 3 96 ± 1 97 ± 2
Ni 94 ± 1 99 ± 1 100 ± 1
Cd 100 ± 1 99 ± 1 99 ± 1
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and cadmium(II) ions were studied by adding known con-
centrations of these ions. The co-precipitation technique 
was then used on each of the different ions independently. 
The recovery values of the analytes ranged from 90% to 
100% (Table 3). Under the conditions utilized in the exper-
iment, target matrix components have not interfered with 
the recoveries of the analyte ions. The proposed co-pre-
cipitation method could be applied to the highly saline  
samples.

3.7. Analytical performance of the procedure

The suggested method’s analytical performance was 
assessed using limit of detection (LOD), limit of quantifi-
cation (LOQ), precision, accuracy, and preconcentration 
factor (PF). The calibration graphs were obtained for all 
target analytes, determined by MIS-FAAS. The LOD and 
LOQ were calculated as 3 × Sb/m and 10 × Sb/m, respectively 
[62]. Where Sb is the standard deviation of the blank (n = 20) 
and m is the slope of the linear section of the calibration 
graph. The LOD of Fe(III), Ni(II), Cr(III), Cu(II), Mn(II), 
Co(III), and Cd(II) were found to be 9.5, 9.2, 6.8, 3.8, 1.9, 
1.4, and 0.8 μg/L, respectively. The precisions of within-day 
and intra-day for the analyte elements were calculated in 
the range of 4.1 to 4.5 with analysis of variance (ANOVA) 
test from the real water samples (Table 4). The ratios of 
the slopes of the calibration curves with preconcentration 

of 1.0 mL and without preconcentration solution were 
used to calculate the experimental preconcentration fac-
tor (Table 4). The theoretical preconcentration factor is 
50, which was obtained by dividing the sample volume 
(50 mL) by the final solution volume (1.0 mL).

3.8. Applications

Different concentrations of analytes were spiked in 
tap and wastewater to validate the accuracy of the current 
co-precipitation technique for metal ions. Table 5 summa-
rizes the findings. The content of the added and found 
analytes was determined to be in good agreement. With a 
few exceptions, the relative recovery values estimated for 
the standard additions were greater than 90%, indicating 
the procedure’s accuracy and the absence of matrix effects.

The developed co-precipitation method was applied 
to BCR-715 wastewater standard reference material for the 
determination of analytes. The mean results of the trip-
licate experiments are good congruent for all analytes 
given a certified value (Table 6).

Analytes of 2 mg Mn and Cd, 4 mg Co, Cu, Ni, and 
Cr, and 8 mg Fe ions were added to the dissolved dried 
mint sample to assess the method’s applicability in plant 
samples. The relative recovery percentage of Mn(II), and 
Fe(III) were found to be 93 ± 4, and 94 ± 6, respectively. 
The other elements have less than 60% recovery.

Fig. 3. Effect of sample volume on the recoveries of analytes (n = 4).

Table 3
Tolerance levels of the matrix ions (n = 4)

Recovery %

Ion Added as Concentration (mg/L) Fe Cu Cr Co Mn Ni Cd

Na+ NaCl 20,000 97 ± 3 95 ± 7 92 ± 7 94 ± 4 96 ± 5 95 ± 6 100 ± 6
K+ KCl 2,500 98 ± 2 99 ± 1 97 ± 2 97 ± 2 90 ± 1 97 ± 2 98 ± 2
Ca2+ CaCl2 2,000 100 ± 1 97 ± 1 91 ± 4 96 ± 1 100 ± 2 97 ± 2 95 ± 5
Mg2+ MgCl2 2,500 99 ± 1 99 ± 1 91 ± 1 99 ± 1 93 ± 2 97 ± 3 96 ± 1
SO4

–2 Na2SO4 2,500 98 ± 7 97 ± 4 95 ± 4 97 ± 4 90 ± 8 97 ± 7 97 ± 4
PO4

–3 Na3PO4 2,500 96 ± 2 97 ± 2 98 ± 2 94 ± 2 92 ± 2 95 ± 5 98 ± 2
HCO3

– NaHCO3 5,000 100 ± 1 96 ± 2 95 ± 1 96 ± 2 97 ± 2 96 ± 3 95 ± 2
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Despite the limitations, the co-precipitation method was 
applied to the determination of iron(III), copper(II), chro-
mium(III), cobalt(II), manganese(II), nickel(II), and cadmi-
um(II) ions in some herbal samples. Table 7 summarizes 

the results, which were calculated with the assumption of 
100% analyte relative recovery. The metal concentration of 
the herbal plant samples was found to be in the following 
ranges: 22.3–157.4 μg/g for iron, 1.6–7.3 μg/g for copper, 

Table 4
Analytical figures of merit of the proposed method

Analyte Linear 
range 
(mg/L)

Calibration equation

Without 
preconcentration

With 
preconcentration

PF Precision (%) ANOVA LOD 
(μg/L)

LOQ 
(μg/L)Within-day Intra-day

Fe 1–8 y = 0.009x + 0.002
(r2: 0.999)

y = 0.430x
(r2: 0.998)

47.8 4.5 4.3 9.5 18.0

Cu 0.5–8 y = 0.049x + 0.001
(r2: 0.999)

y = 2.416x – 0.001
(r2: 0.999)

49.3 4.5 4.2 3.8 7.6

Cr 1–20 y = 0.007x + 0.003
(r2: 0.998)

y = 0.322x + 0.001
(r2: 0.999)

46.0 4.5 4.3 6.8 21.0

Co 0.5–10 y = 0.022x + 0.005
(r2: 0.997)

y = 1.144x + 0.005
(r2: 0.998)

52.0 4.4 4.2 1.4 6.8

Mn 0.5–8 y = 0.053x + 0.001
(r2: 0.999)

y = 2.503x + 0.012
(r2: 0.999)

47.2 4.4 4.1 1.9 13.0

Ni 1–8 y = 0.013x + 0.003
(r2: 0.998)

y = 0.694x + 0.013
(r2: 0.998)

46.3 4.3 4.1 9.2 27.0

Cd 0.1–4 y = 0.241x + 0.012
(r2: 0.998)

y = 12.96x + 0.002
(r2: 0.999)

53.8 4.3 4.1 0.8 1.1

PF: Preconcentration factor, LOD: Limit of detection, LOQ: Limit of quantification

Table 5
Application of the presented procedure for some water samples (n = 3)

Analyte Added 
(μg/L)

Tap water Wastewater

Found (μg/L) R % RSD % Found (μg/L) R % RSD %

Fe
0 36.3 ± 4.0 – 11.0 31.2 ± 2.4 – 7.7
40 72.1 ± 2.1 90 ± 1 2.9 70.1 ± 0.1 97 ± 1 0.1
80 118.3 ± 4.8 102 ± 2 4.0 114.6 ± 1.6 104 ± 2 1.4

Cu
0 33.8 ± 1.4 – 4.1 37.5 ± 1.4 – 3.7
40 71.7 ± 0.4 95 ± 1 0.6 74.7 ± 0.9 93 ± 2 1.2
80 113.5 ± 1.8 100 ± 1 1.6 110.3 ± 1.3 91 ± 1 1.2

Cr
0 BDL – – BDL – –
80 78.1 ± 0.1 98 ± 1 0.1 75.1 ± 0.1 94 ± 2 0.1
160 157.2 ± 0.2 98 ± 1 0.1 162.1 ± 2.2 101 ± 1 1.4

Co
0 BDL – – BDL – –
80 79.1 ± 5.8 99 ± 1 7.3 72.1 ± 1.1 90 ± 1 1.5
160 156.8 ± 1.0 98 ± 2 0.6 146.1 ± 0.1 91 ± 2 0.1

Mn
0 BDL – – 17.0 ± 1.4 – 8.2
80 80.6 ± 7.4 101 ± 1 9.2 93.1 ± 0.1 95 ± 1 0.1
160 159.3 ± 16.5 100 ± 2 10.4 171.4 ± 11.0 97 ± 3 6.4

Ni
0 BDL – – BDL – –
80 84.0 ± 8.0 105 ± 2 9.5 72.0 ± 0.1 90 ± 2 0.1
160 145.8 ± 6.2 91 ± 1 4.3 158.5 ± 5.7 99 ± 1 3.6

Cd
0 BDL – – 4.0 ± 0.4 – 10
40 42.0 ± 0.8 105 ± 3 1.9 40.8 ± 0.1 92 ± 1 0.3
80 75.6 ± 0.9 95 ± 1 1.2 80.8 ± 0.1 96 ± 1 0.1

BDL: Below the detection limit, R: Recovery, RSD: Relative standard deviation
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1.1–5.2 μg/g for chromium, 0.56–0.91 μg/g for cobalt, 2.3–
54.3 μg/g for manganese, 1.05–9.8 μg/g for nickel and 0.64–
14.4 μg/g for cadmium. The acquired results are consistent 
with those given in the literature [8,56].

3.9. Comparison with previous methods

The determined element and sample type, instru-
ments and analytical performance of the method and 
other selected co-precipitation methods are summarized 
in Table 8. Except for the method in which zirconium and 
aluminum [57] are used, determinations in all other meth-
ods were carried out by atomic absorption spectrometry. 
However, graphite furnace AAS is a more costly equip-
ment, which is difficult to implement compared to flame 
AAS. Co-precipitation with bismuth allows multiple trace 
element determination like some other methods (outside of 
zirconium, magnesium, cerium, aluminum [53] and praseo-
dymium). The amount of co-precipitant is 1.2 to 18 times 
lower than other methods described (excluding Saracoglu 
et al. [54]) and the same as Soylak et al. (2005, 2006). The 
preconcentration factor is generally obtained with a sam-
ple volume ratio of the final volume. Apart from the meth-
ods using lutetium, praseodymium, and dysprosium as 
metal hydroxide, the analytes’ preconcentration factor is 2 
to 50 times higher than the other compared methods. The 
limit of detections of the analytes are comparable to some 
of the reported methods [54,56] and better than others  
[47,49,51].

When the methods are compared in terms of the cost of 
implementation, the price of the precipitating reagent salts 
used should also be evaluated. When the catalog prices 

of the nitrate salts of the elements shown in the table are 
examined, the cheapest ones per gram are aluminum, bis-
muth, magnesium, and cerium, respectively (https://www.
sigmaaldrich.com). Others are about 10–400 times more 
expensive. This FAAS method, in which 500 mg of bismuth 
is presented as a precipitating reagent; it stands out in terms 
of being suitable for multi-element determination, low cost 
in routine analysis processes, easy and fast application.

4. Conclusions

The proposed method, which uses bismuth(III) ion as 
a precipitating reagent has been optimized in all condi-
tions and applied to real samples is the first technique in 
this working area. Bismuth hydroxide precipitate to copre-
cipitate iron(III), copper(II), chromium(III), cobalt(II), man-
ganese(II), nickel(II), and cadmium(II) ions, is simple and 
accurate. The method combined with MIS-FAAS allows to 
work in a sample volume of 10 mL at low amount sodium 
hydroxide. For flame atomic absorption spectrophotometry, 
the matrix ion effects are permissible. At the best working 
conditions, analytes were relative recovered at a rate of more 
than 95%. The developed method has been successfully 
applied to the analysis of tap water and wastewater after val-
idation. Furthermore, it was studied for the determination of 
metals (especially for Mn(II) and Fe(III) ions) in some plant 
samples. The total analysis time spent for the co-precipita-
tion and determination was only about 20 min. Moreover 
the amount of bismuth(III) used for all experiments is 0.50 g. 
The proposed method with optimized all analysis param-
eters is new, very fast, economical, and eco-friendly for 
multi-element determination.

Table 6
Results for wastewater BCR-715 reference standard materials (mg/L)

Analyte Fe Cu Cr Co Mn (μg/L) Ni Cd (μg/L)

Certified value 3 0.90 1.00 ** 248 1.20 40
Found value 2.9 ± 0.3 0.87 ± 0.09 1.14 ± 0.04 ** 247 ± 14 1.28 ± 0.10 38 ± 3

*P = 0.95; x ± ts/√N; **Not certificated.

Table 7
Analysis of real herbal samples (n = 3)

Concentration, μg/ga

Sample Fe Cu Cr Co Mn Ni Cd

Black cumin 122.2 ± 11.1 6.8 ± 0.6 3.4 ± 0.3 BDL 54.3 ± 5.3 1.9 ± 0.2 0.97 ± 0.11
Thyme 80.4 ± 8.2 4.7 ± 0.5 3.1 ± 0.2 BDL 12.5 ± 1.1 7.4 ± 0.1 0.81 ± 0.06
Basil 129.0 ± 16.6 7.1 ± 0.2 5.2 ± 0.2 0.91 ± 0.01 38.9 ± 4.0 1.5 ± 0.2 0.64 ± 0.07
Garden sorrel 154.7 ± 20.4 2.7 ± 0.4 2.6 ± 0.2 0.67 ± 0.01 17.3 ± 1.6 2.6 ± 0.2 1.17 ± 0.07
Mint 42.8 ± 4.8 3.9 ± 0.5 3.5 ± 0.2 0.75 ± 0.10 30.7 ± 2.0 1.5 ± 0.2 1.03 ± 0.10
Red pepper 84.4 ± 2.5 1.6 ± 0.1 2.9 ± 0.1 BDL 8.0 ± 0.4 9.8 ± 0.2 2.3 ± 0.1
Mallow 118.0 ± 1.6 7.3 ± 0.4 5.1 ± 0.2 0.56 ± 0.06 12.4 ± 1.0 1.05 ± 0.01 5.1 ± 0.1
Rosemary 27.1 ± 1.0 BDL 1.1 ± 0.1 BDL 2.3 ± 0.2 1.5 ± 0.1 7.4 ± 0.6
Sweet basil 22.3 ± 1.1 5.6 ± 0.6 1.4 ± 0.2 BDL 17.5 ± 2.5 1.8 ± 0.2 14.4 ± 0.2

aMean ± standard deviations, BDL: Below the detection limit
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