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a b s t r a c t
This study developed tree-based ensemble machine learning models to predict forward osmosis 
(FO) permeate flux using extreme gradient boosting (XGBoost) and light-gradient boosting machine 
(LGBM) methods. The models were trained by approximately 700 data points from the FO experi-
mental data. The results showed that LGBM and XGBoost could predict the FO permeate flux with 
very high accuracy (>0.95 of R2) in the test set. Feature analysis using Shapley additive explanations 
values was performed to identify the influences of input variables on the model output and the 
correlation between the input variables. The results revealed that water permeability and pressure 
difference have the most significant variables on the FO permeate flux. The correlation between 
the operating conditions and water permeability cannot be neglected. In this study, we clarified the 
applicability of ensemble machine learning models for FO systems and suggested directions for 
future data collection.
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1. Introduction

Water scarcity is one of the most significant obstacles 
to maintain a sustainable human society [1]. While the 
water demand has increased due to climate change caused 
by global warming, rapid urbanization, and industrial-
ization, the amount of freshwater on Earth cannot easily 
meet this demand [2,3]. Because 97% of water resources 
on Earth are seawater, seawater desalination technology is 
vital for resolving the water shortage problem and securing 
a sustainable freshwater supply system. Although reverse 
osmosis (RO) is regarded as an efficient water treatment 
technology, its high fouling/scaling propensity and high 
energy consumption due to high-pressure operation still 
have severe weaknesses [4]. Forward osmosis (FO) has been 
proposed as an alternative for resolving RO technology’s 

shortcomings. The main characteristic of FO is spontaneous 
water permeation by a concentration-driven system, not 
by a pressure-driven system [5]. The osmotic pressure dif-
ference between the low-concentration feed solution (FS) 
and the highly concentrated draw solution (DS) is the main 
driving force of FO [6]. Therefore, these concentrations 
should be considered when investigating FO systems.

Water flux and reverse salt flux (RSF) are typically 
utilized to evaluate the performance of FO systems [7]. 
High water flux and low RSF are desirable in FO systems. 
However, the water flux and RSF influence the effective 
osmotic pressure difference because these fluxes change 
the concentration near the FO membrane compared with 
the bulk concentration. This phenomenon, called concen-
tration polarization (CP), should be identified because 
the main driving force of the FO system might be heavily 
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influenced by the CP [8]. Standard FO membranes have an 
asymmetric structure that includes a thin active layer and 
a porous support layer. Thus, there are two kinds of CPs: 
internal concentration polarization (ICP), which appears 
in the porous support layer, and external concentration 
polarization (ECP), which can be found at the surface of 
the active layer and the support layer [9]. These CPs should 
be precisely calculated to estimate the water and reverse 
salt fluxes in the FO system. However, CPs and their cor-
responding FO performance are affected by various vari-
ables, such as the DS and FS concentration, temperature, 
speed, and flow direction [7]. Because these variables are 
implicitly correlated, complex relationships between them 
should be revealed to accurately evaluate the performance 
of the FO system [1]. Therefore, developing an accurate 
model and elucidating the correlation between variables 
is necessary to estimate FO performance [6] accurately.

Recently, predictive models using machine learning 
and deep learning have focused on various fields, such as 
medicine [10], gene manipulation [11], chemical reactions 
[12], and desalination [13]. An artificial neural network 
(ANN) was used to optimize the FO process based on the 
water flux and RSF [14]. A simulation approach using an 
ANN was conducted to analyze the cause of membrane 
contamination in the RO process and predict membrane 
fouling [15]. In addition, a recent study developed an algo-
rithm to predict permeate flux using a multi-layered neu-
ral network that improved the ANN model [16]. Although 
many studies have predicted the FO permeate flux using 
machine learning models such as ANN, the relationship 
between the membrane parameters and operation vari-
ables have not been clearly revealed. Further, state-of-the-
art machine learning methods have not been implemented 
in the flux estimation of FO systems. Therefore, it is nec-
essary to implement state-of-the-art machine learning 
algorithms to improve the prediction performance of 
FO fluxes and understand the implicit correlations and 
sensitivities of the variables based on the prediction results.

In this study, we developed FO water flux prediction 
models using tree-based machine learning algorithms that 
typically have a higher regression performance than an 
ANN model. This study used two different algorithms: 
extreme gradient boosting (XGBoost) and light-gradient 
boosting machine (LGBM). A multiple linear regression 
(MLR) model was also implemented as a base case study 
to analyze the nonlinear behavior between the variables. 
Training and testing were conducted using approximately 
700 lab-scale FO process data points obtained in previous 
studies. The optimal hyperparameters in the tree-based 
machine learning models were determined using a grid-
search. A quantitative evaluation was performed to ana-
lyze the prediction performance of the models. Using the 
Shapley additive explanation (SHAP) method, we analyzed 
the effect of each operation variable on the permeate flux.

2. Methodology

2.1. FO process data collection

Experimental FO process data for training the machine 
learning models were obtained from a previous study [7]. 

Usually, the design and existence of a spacer affect FO per-
formance [7]. Thus, FO experimental data were collected 
only in the case of a flat-sheet membrane module without 
spacers [17].

The data characteristics were identified and catego-
rized to utilize FO data in the training of machine learning 
models. The total collected data was 692 with 18 different 
types of variables (11 numeric, 1 date, and 6 categorical). 
The data included membrane characteristics, such as the 
type of active layer, manufacturer, membrane orientation, 
reported year (partially correlated with the manufactured 
year), water permeability, and flow direction. The condi-
tions of the solutions were included in the data set, such 
as the type of solute, concentration, temperature, osmotic 
pressure, and cross-flow velocity of the FS and DS. The 
water flux and hydraulic pressure differences across the 
FO membrane were also included. The water permeate 
flux was designed as a target variable for model predic-
tion. Further, the reverse salt flux and salt permeability 
were excluded from the model development because of 
a lack of sufficient data. A simple imputer replaced par-
tially missing data (FS and DS velocities) with an average  
value.

For model training, categorical data were converted 
using the one-hot encoding (OHE). The OHE was expressed 
as number (digit) 1. The OHE can cause a problem of curse 
of dimensionality if the categorical data contains many 
different types. In this study, however, only membrane 
manufacture has six different types of data, and the other 
data consist of just two types. Therefore, the problem of 
OHE can be minimized. Numeric data were preprocessed 
using logarithmic transformation (np.log1p) in the Python 
NumPy library to reduce deviations and increase regu-
larity. The preprocessed data were split at an 8:2 ratio to 
use the training/test data.

2.2. Model

Among the tree-based ensemble machine learning 
models in Python, the XGBoost and LGBM models were 
used to predict the permeate flux according to the input 
variables. MLR was also used to predict FO permeate flux.

2.2.1. Multiple linear regression

Regression analysis is a statistical method used to iden-
tify the relationships between variables. The MLR model is 
an extension of simple regression analysis and a machine 
learning technique that expresses the linear relationship 
between two or more independent variables [18]. It has 
been widely used to predict various system variables, such 
as the thermal efficiency [19] and compressive strength of 
recycled aggregate concrete [20].

Y B B X B X B Xn n� � � � � �0 1 1 2 2 ... �  (1)

The dependent variable Y was predicted based on 
several independent variables X. Parameter Bi denotes a 
regression coefficient (or weighting factor) weighted on 
the X value. ε is a residual part that cannot be explained by 
the MLR, such as noise [21]. Through MLR, the weighting 
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factors and noise were quantified, and the prediction model’s 
performance was evaluated.

2.2.2. XGBoost

XGBoost has been widely used in tree-based ensem-
ble models using gradient boosting, as it has a very high 
accuracy in predicting system variables [22]. In addition, 
the XGBoost model applies to small-size training data sets 
[23,24]. This advantage is helpful because obtaining exten-
sive and sufficient data is difficult. Because approximately 
700 data points were used in this study, the XGBoost model is 
appropriate for use in FO permeate flux prediction.

XGBoost can handle classification and regression tree 
(CART) problems based on a decision-tree algorithm. This 
model creates two branches (sets) according to the condition 
of one variable, up to the maximum depth of the specified 
tree, as shown in Fig. 1. This approach is expressed in Eq. (2) 
as follows [22].

R j s x x s R j s x x sj j
1 2, ,� � � �� � � � � �� �and  (2)

where xj is the observation of the jth feature component cor-
responding to the training dataset. A decision tree split (j, s) is 
represented by a splitting feature component j and split point 
s, where the two leaves are divided.

XGBoost learns by creating a new tree to minimize the 
residual error, as shown in Fig. 1. After repeating the tree 
algorithm, the predicted output value is obtained using 
Eq. (3) [25]:

y f xi k i
k

k
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where yi  is the variable used to predict fk(xi) K 
is the number of trees. fk(xi) is the result of the 
kth tree according to xi. In this study, yi is the permeate flux.

2.2.3. Light-gradient boosting machine

The LGBM is a gradient-boosting decision tree algo-
rithm developed by Microsoft to obtain a faster learning 
speed than the other models [26]. XGBoost is a level-wise 
method that uniformly creates trees on both sides. LGBM 
creates an asymmetric tree using a leaf-wise method 
(Fig. 2) [24,27]. In LGBM, a gradient-based one-side sam-
pling (GOSS) method creates a leaf-wise structure [28]. In 
addition, exclusive feature bundling (EFB), which min-
imizes the sparsity of the training dataset by bundling 
exclusive features, was utilized in this study. The LGBM 
has the advantages of fast learning and fewer memory 
requirements during learning. Thus, the LGBM is rec-
ommended for developing a machine learning model 
when the dataset size is large. However, it is more prone 
to overfitting problems than other tree-based ensemble 
algorithms when the data size is small.

In this study, the permeate flux was predicted by increas-
ing the available number of datasets using k-fold cross- 
validation to avoid overfitting. In addition, hyperparameters 
such as max_depth, min_sample_split, and lambda were 
adjusted using grid-search. Finally, the n_estimator is tuned 
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Fig. 1. Schematic diagram of the XGBoost model.
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to a significant value with a small learning rate to find the 
optimal points of the hyperparameters.

2.2.4. Model validation

We used the coefficient of determination (R2), mean abso-
lute error (MAE), and root mean squared error (RMSE) to 
verify whether the machine learning algorithms used in this 
study (MLR, XGBosst, and LGBM) were well-trained. The 
test data, divided from the original data before training, were 
used to compare the predicted and actual values. Eqs. (4)–(7) 
are used for each verification method.
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R2 is an indicator of how well the statistical model 
explains the data. The closer the number is to 1, the better 
the model performance [29]. The other indicators (MAE, 
RMSE, and MSE) were correlated with the magnitude of 
the errors between the data and model predictions. Thus, 
if these indicators are close to zero, the regression model 
exhibits high prediction performance. MAE considers 
the absolute value of the error between the predicted and 
actual values. Although relatively straightforward, an out-
lier in the prediction model cannot be easily found. Unlike 
MAE, MSE and RMSE utilize squared error values instead 
of absolute values. Thus, outliers can be easily found 
because the errors between the outliers and actual values 
are amplified. As the squared treatment of the errors ampli-
fies the overall values of the summation of errors, RMSE 
converts the size of the error value to be similar to the 
actual value by rooting the MSE for intuitive analysis [26].

2.2.5. Cross-validation and finding optimal hyperparameters

The k-fold cross-validation method was used to sup-
plement the insufficient dataset, improve accuracy, and 
prevent overfitting. As shown in Fig. 3, the entire dataset 

was divided into k groups of equal sizes. One of the divided 
groups was used as a validation set, and the remaining 
groups (the size is (k–1)/k to the total dataset) were used as 
a training set. This procedure is repeated k times. In other 
words, the MSE values of k different models were aver-
aged to obtain CV(k), the final test error [30]. In this study, 
k is set to 5.

CV MSEk
k i
i

k

� � �
�
�1

1
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The tree-based ensemble machine learning models 
used a grid-search method to determine the best hyperpa-
rameters. The grid-search method was implemented in the 
Python scikit-learn library. This function was designed to 
find the best hyperparameter set from combinations of the 
potential candidates for the hyperparameters [31].

This study used a built-in function, ‘GridSearchCV’, 
which combines grid-search and k-fold cross-validation. The 
‘GridSearchCV’ provides the best score which represents 
how much the model fits well to the training data set. The 
range of the best score is [0,1], and the model prediction 
becomes perfect if the best score approaches 1. The algorithm 
provided optimal hyperparameters such as the learning rate, 
number of trees, sampling, tree depth, and regularization 
coefficients (L1, L2), essential parameters for the XGBoost 
and LGBM models.

3. Results and discussion

3.1. Prediction results using MLR model

Although the MLR model provides good performance 
for prediction, any complexity and nonlinearity in the data 
set worsen the model prediction performance because the 
MLR model is inherently a linear regression [19,21]. The MLR 
regression model was used to compare with the tree-based 
ensemble models and identify the relationship between 
the input variables and target variable (permeate flux).

The MLR prediction performance was evaluated using 
R2, MAE, MSE, and RMSE. Comparing the predicted 
results using the test data with the actual values, MAE was 
3.5784, MSE was 32.9855, and RMSE was 5.7433. As shown 
in Fig. 4, the coefficient of determination (R2) is 0.8252 for 
the training dataset and 0.7624 for the test data-set. The 
FO process dataset included many nonlinear correlations 
between variables. Thus, the prediction performance for 
estimating permeate flux was poor because of the inherent 
characteristics of the linear regression model, as discussed 
in the previous paragraph. In addition, the highly scattered 

…… ……

Level-wise growth Leaf-wise growth

Fig. 2. Schematic diagram of level-wise growth (XGBoost) and leaf-wise growth (LGBM).
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data points in Fig. 4 indicate that MLR cannot be success-
fully utilized as a prediction model for the FO system.

3.2. Prediction results using the XGBoost model

The XGBoost model provides a good prediction per-
formance by reducing the residuals of the predicted and 
actual values and can also quantify the importance of rela-
tionships between the input variable and the output variable 
through feature importance analysis. To obtain the highest 
performance of the XGBoost model, hyperparameter opti-
mization should be conducted. The overfitting problem 
can be controlled by specifying regularization coefficients 
such as λ (L2 regularization) and α (L1 regularization). 
The grid-search algorithm obtained hyperparameters for 
the FO permeate flux prediction model, as listed in Table 1.

The model with the optimal parameters obtained by 
grid-search was evaluated using k-fold cross-validation. 
The GridSearchCV result was 0.9669, indicating that the 
model was well-trained without overfitting.

The performances of the XGBoost model for FO perme-
ate flux prediction were 1.2768, 5.618, and 2.3702 for MAE, 

MSE, and RMSE, respectively. The R2 was 0.9873 for the 
training dataset and 0.9544 for the test data-set, as shown in 
Fig. 5. The test data showed a higher R2 value than the MLR 
model, and the scattering of the data points was narrower. 
The XGBoost model has been widely used because of its 
high prediction performance and because the structure of 
the model can express nonlinear characteristics. Therefore, 

Training set

Training folds Test fold

1st iteration

2nd iteration

3rd iteration

10th iteration

E 1

E 2

E 3

E 10

E =  

…

Fig. 3. Mechanism of k-fold cross-validation.
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Fig. 4. Predicted permeate flux vs. actual permeate flux with R2 by MLR model (a) train data and (b) test data.

Table 1
Hyperparameters of XGBoost model optimized using grid-
search

Hyperparameters Values Ranges

n_estimators 1,000 [100, 1000]
max_depth 3 [1, 5]
Learning rate 0.01 [0.01, 0.001]
min_sample_split 1 [1, 5]
γ 0 [0, 1]
α 0.6 [0, 2]
β 0.8 [0, 1]
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the FO permeate flux prediction performance can be 
achieved using the XGBoost model, despite the dispersed 
FO experimental data obtained from various studies.

3.3. Prediction results using the LGBM model

The LGBM model was built based on many CARTs 
that won the Kaggle data analysis competition. The main 
advantage of the LGBM is that it requires a relatively 
shorter training time. In this study, the training time of the 
LGBM for FO permeate flux prediction was five times faster 
than that of the XGBoost model.

Because the LGBM uses the GOSS algorithm to con-
struct a leaf-wise structure for fast and high-precision 
results, overfitting should be carefully checked if the 
dataset size is insufficient. The hyperparameter setting is 
significant in the LGBM model and the XGBoost model. 
Table 2 shows the optimal hyperparameter set used in the 
LGBM model in this study. The LGBM model with optimal 
hyperparameters was verified using the GridSearchCV 
function. The highest accuracy point of LGBM was 
0.9682, which was slightly higher than that of XGBoost 
(0.9669). Hence, it was confirmed that the insufficient 
dataset was supplemented by k-fold cross-validation.

The performance of the LGBM for FO permeate flux 
prediction was 1.1184 for MAE, 4.8540 for MSE, and 2.2032 
for RMSE. The R2 values for the training and test data-sets 
were 0.9884 and 0.9606, respectively (Fig. 6). The prediction 
performance of the LGBM model was higher than that of 
MLR and XGBoost. Although the prediction performances 
of LGBM and XGBoost are comparable, the fast training 
speed of the LGBM is a significant advantage of the machine 
learning model. Therefore, the LGBM model is the most 
appropriate method for predicting the FO permeate flux.

3.4. Model comparisons and feature importance

To display the comparison results, the FO predic-
tion performance of each model with the test data-set is 

summarized in Table 3. The LGBM showed the highest 
prediction performance, and MLR showed the lowest 
prediction performance among all indicators. R2 > 0.95, 
using the model with good prediction performance is 
desirable. In addition, the learning times of the XGBoost 
model and the LGBM model are 0.251s and 0.034s, respec-
tively. The LGBM model is 7 times faster than the XGBoost. 
It can be concluded that tree-based ensemble models using 
gradient boosting are suitable for learning FO process 
data and exhibit good performance.

In this study, we used SHAP values to describe the fea-
ture importance of the input variables to the FO permeate 
flux without the problems of inconsistency and high car-
dinality. In addition, a feature importance analysis was 
performed to identify the extent of its influence on the 
target variable. The feature importance of each input vari-
able was obtained by calculating the average impurity 
reduction in the developed tree for each characteristic.

3.4.1. SHAP values using the LGBM model

Fig. 7a and b show the feature importance and sum-
mary plot of the SHAP values of the input variables using 
the LGBM model. As shown in Fig. 7a, water permeability 

Table 2
Hyperparameters of LGBM models optimized using grid-search

Hyperparameters Values Ranges

n_estimators 1,000 [100, 1000]
max_depth 3 [1, 5]
Learning rate 0.01 [0.01, 0.001]
min_sample_split 1 [1, 5]
γ 0 [0, 1]
α 1.0 [0, 2]
β 0.4 [0, 1]

(a)
 

(b)
 

Fig. 5. Predicted permeate flux vs. actual permeate flux with R2 by XGBoost model (a) train data and (b) test data.
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has the highest SHAP value (+8.9), followed by the pres-
sure difference (SHAP value = +6.12). Water permeability is 
directly correlated with the FO permeate flux, as expressed 
in a flux equation [32–34]. Thus, the highest SHAP value for 
water permeability is reasonable. Because FO is a concen-
tration-driven water permeation system, DS osmotic pres-
sure’s relatively high SHAP value is acceptable. Although 
the high SHAP value of the pressure difference appears 
unusual, the pressure difference also affects the perme-
ate flux directly, even in the FO system. Pressure-assisted 
FO is a relevant example of the significant influence of the 
pressure difference on the permeate flux [35]. The pres-
sure difference affects the permeate flux more directly than 
the osmotic pressure difference because the CPs reduce 
the effective osmotic pressure difference. This might be 
the main reason for the higher SHAP value of the pressure 
difference than that of the DS osmotic pressure. The other 
input variables had similar impacts on the FO permeate flux. 
Although the effects of the other input variables were rela-
tively minor, these factors should be carefully considered to 
improve the FO permeate flux prediction of the LGBM model.

Fig. 7b shows the SHAP summary plot of the impact of 
the features on the model output. Red points show high fea-
ture values, and blue points represent low values. Similar 
conclusions were drawn from the SHAP summary chart. 

The higher the values of the water permeability and pres-
sure difference applied in the FO system, the larger the 
water permeate flux. Through Fig. 7b, the feature impact can 
be quantified comprehensively.

In addition, the correlation between the input variables 
should also be checked. Fig. 8 shows the heatmap results 
for analyzing the correlation between the input variables 
[36]. Water permeability has the highest positive correla-
tion (0.602) with the target variable (FO permeate flux), 
followed by the pressure difference (0.189). Although 
most of the input variables have a low correlation, some 
of the inputs are significantly correlated owing to their 
inherent characteristics. For example, osmotic pressure 
and molarity are directly correlated, and the correlation 
values are higher than 0.9. The correlation between the 
input variables and water permeability was quite large. 
The correlation values of the DS osmotic pressure and 
pressure difference with water permeability are higher 
than 0.46. As suggested in a previous study, water perme-
ability can vary depending on operating conditions [7]. 
Therefore, the possibility of variable water permeability 
under different operating conditions was investigated in  
this study.

However, some of the input variables are unnecessarily 
correlated owing to the conditions of the experimental data. 
The correlation between FS and DS temperatures was very 
high because most of the experimental data were obtained at 
the same temperature. Because the effects of different tem-
peratures on FS and DS solutions have been reported, data 
treatment should consider the effects of these limitations [37]. 
In addition, other variables that might influence FO permeate 
flux should be included as much as possible during model 
development. Further considerations will improve the per-
formance of machine-learning models in FO systems and 
expand their applicability to various membrane separation 
systems.

Table 3
Comparison of the FO permeate flux prediction performance by 
MLR, XGBoost, and LGBM models using test data

Models MAE MSE RMSE R2 score

MLR 3.4833 29.3667 5.4191 0.8107
XGBoost 1.2768 5.6181 2.3702 0.9544
LGBM 1.1184 4.8540 2.2032 0.9606

(a) (b)

Fig. 6. Predicted permeate flux vs. actual permeate flux with R2 by LGBM model (a) train data and (b) test data.



37Y. Song et al. / Desalination and Water Treatment 277 (2022) 30–39

(a) (b)

Fig. 7. SHAP values of the input variables using the LGBM model. (a) SHAP feature importance and (b) SHAP summary plot.

Fig. 8. Heatmap results of the input variables using the LGBM model. The unit of input variables are Year (year), FS molarity (M), 
FS osmotic pressure (atm), DS molarity (M), DS osmotic pressure (atm), P difference (atm), FS velocity (cm/s), DS velocity (cm/s), 
FS temperature (°C), DS temperature (°C), and A (LMH/atm).
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4. Conclusions

This study predicted the FO permeate flux using tree-
based ensemble machine learning models. Two tree-based 
ensemble models (XGBoost and LGBM) and MLR models 
were used for FO permeate flux prediction, and a compara-
tive analysis of flux prediction performance was conducted. 
The experimental data (approximately 700 points) were 
obtained from the literature on FO systems using a flat-
sheet module. The machine learning models were trained 
using the dataset, and overfitting problems were minimized 
using k-fold cross-validation.

The results showed that the LGBM model had a higher 
performance of FO permeate flux prediction (R2 = 0.9606 by 
test set). XGBoost was comparable to LGBM (R2 = 0.9544 
by test set). However, the longer training time makes 
the LGBM model more useful. Both tree-based ensemble 
models have better performance than MLR (R2 = 0.8107), 
revealing that the nonlinear characteristics of the FO per-
meate flux cannot be neglected. In addition, the feature 
importance of the input variables was investigated, and 
the correlation between the input variables was quanti-
fied. The results showed that the water permeability and 
pressure difference significantly influenced the FO perme-
ate flux. Most input variables were not highly correlated. 
However, the correlations in some input variables were 
unreasonable due to the skewed conditions of the exper-
imental data. We revealed the current potential of tree-
based ensemble machine learning models for FO permeate 
flux prediction and clarified the limitations of the dataset. 
Based on the conclusions of this study, we suggest future 
directions for FO data collection.
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