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a b s t r a c t
The present work is focused on the implementation of a new optimization strategy using a multi-
variable inverse artificial neural network (ANNim) to increase the removal efficiency of commercial 
herbicides in a sonophotocatalysis process. This research contributes significantly for the removal 
of pollutants in aquatic ecosystems, reducing the chemical oxygen demand (COD). To carry out 
the strategy, it is necessary to develop an artificial neural network (ANN) model considering the 
multiple input variables of the process. The ANN model obtained satisfactory results, showing a 
coefficient of determination (R2) of 0.9723 and a root mean square error equal to 0.0414. The training 
data was fitted with a Levenberg–Marquardt algorithm with a hyperbolic tangent sigmoid function 
in the hidden layer. Subsequently, an objective function is proposed using the coefficients gener-
ated by the ANN model to minimize the COD value. For the determination of optimal variables, 
this work adapted particle swarm optimization (PSO), obtaining the ANNim-PSO computational 
strategy. The hybridization of the ANNim model with the PSO algorithm was necessary to deter-
mine the optimal parameters in the shortest possible time, improving the rate of removal of the 
active ingredients of herbicides compared to other degradation methods. The results showed that 
by optimizing one variable at a time in a specific experimental test, it is possible to increase the 
removal efficiency of commercial herbicides from 84.1% to 100% due to the effect of the TiO2 catalyst 
(250 mg/L) in 55 min. However, optimizing more than one variable at the same time, the elimination 
of commercial herbicides was achieved in less time, reaching 100% due to the combined effect of 
pH (5), TiO2 (250 mg/L) and K2SO4 (3 mM) catalysts in 5 min. Finally, the optimal parameters imply 
a total removal of the active ingredients of commercial herbicides in a considerably short time due 
to the increase in the superficial concentrations, obtaining a better absorption of the energy pro-
duced by the effect of pH and the TiO2, the deposition of K2SO4, and the effective combination of 
ultrasound with the photocatalysis process.
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1. Introduction

In agriculture, the application of fertilizers and pesti-
cides has improved the quality of the production of vari-
ous crops, promoting plant growth and pest control. On 
the other hand, the application of herbicides has facilitated 
the work of the farmers in the cleaning of weeds in the 
sowing fields. However, in compliance with the demands 
of quality and competence during the sale of the products, 
the farmers abuse the use of these agrochemicals. Among 
the negative effects caused by the abuse of agrochemicals, 
are: significant changes in the composition and reduction 
of specific species of flora, pollution to the urban environ-
ment, toxicity in mammals affecting the endocrine systems, 
reproductive, neural, and immune liver, groundwater con-
tamination [1–4]. Based on the negative effects mentioned, 
groundwater contamination is one of the most alarming. 
This is due to the direct impact that occurs in the food chain 
between flora and fauna, as well as the population.

Among the commercial herbicides, there are those of 
the selective type focused on eliminating weeds in a specific 
way, such as: the alazine (active ingredient: alachlor, atra-
zine) and gesaprim (active ingredient: atrazine). However, 
these commercial herbicides are often improperly applied 
by farmers, especially during the rainy season. For this 
reason, it is imperative to propose a method to remove the 
active ingredients that cause toxic effects in the water. In 
the literature, various methodologies have been reported 
to treat the degradation of these pollutants, as presented: 
Bahena et al. [5] applied to sonophotocatalytic process to 
remove the herbicides alazine and gesaprim using aque-
ous suspensions of TiO2 under UV light. The results show 
high performance in decomposition, improving the pho-
todegradation with the use of ultrasound, achieving the 
degradation of the active component in more than 90% 
for gesaprim and 100% for alazine after 150 min. Jiménez 
et al. [6] evaluated through solar photo-Fenton the contam-
inants of a mixture of herbicides (hierbamina and gesap-
rim) in wastewater using a compound parabolic collector. 
In the experimental tests, satisfactory results were found 
applying 10 mg/L of iron (Fe), obtaining the removal of 
the active ingredients with a mineralization of at least 60% 
of the original total organic carbon (TOC). Garza-Campos 
et al. [7] studied the coupling of solar photoelectro- 
Fenton with boron-doped diamond (BDD) and solar het-
erogeneous photocatalysis for the mineralization of an 
atrazine solution (prepared from a commercial herbicide). 
The results showed to obtain 80% mineralization of atra-
zine after 300 min. Yu et al. [8] employed mycelial pel-
lets of Aspergillus niger Y3 to immobilize ZXY-2, forming 
a self-immobilized biomixture (SIB) to remove atrazine. 
The results showed that using the biomixture was possi-
ble to remove atrazine efficiently after 8 h under specific 
conditions of temperature, pH and initial concentration.

In the previously described works dedicated to the 
removal of active ingredients from commercial herbicides, 
the sonophotocatalysis method excels at obtaining a high 

removal performance of alazine and gesaprim. The oper-
ation of this process is complex due to the interaction of 
the multiple variables involved during the photocatalytic 
reaction. The determination of optimal parameters through 
experimental tests are potentially an alternative to improve 
the degradation of pollutants present in aqueous treatments. 
Consequently, this work proposes the development of a new 
computational strategy to optimize the sonophotocatalysis 
process by minimizing the value of the chemical oxygen 
demand (COD). The computational strategy is based on the 
approach of a multivariable inverse artificial neural network 
(ANNim), which consists of increasing the performance of 
a process using the coefficients generated by an artificial 
neural network (ANN) [9]. ANN’s models have been widely 
recommended to simulate non-linear behaviors related to 
desalination in forward osmosis processes and humidifica-
tion–dehumidification systems [10,11]. Therefore, an ANN 
model is used to simulate the COD value of the sonopho-
tocatalysis process. The hybridization of computational 
models with meta-heuristic algorithms has been an excel-
lent combination to achieve specific objectives related to 
process optimization. The particle swarm optimization 
(PSO) algorithm has the ability to provide optimal solu-
tions in problems that cannot be differentiable, that are not 
regular or homogeneous, even with noise signals or varia-
tions during time dynamics. In the area of computational 
methods, the PSO algorithm has contributed significant 
advances, such as the computation of weights in artificial 
neural networks, time series analysis, and optimization in 
finance, among others [12–15].

The potential of the PSO algorithm to solve non-lin-
ear optimization problems as non-derivable using classi-
cal mathematical methods is favorable to couple with the 
ANN model. The coupling of the PSO algorithm has been 
developed in the adjustment of the weights and bias during 
the training of the ANN models, with advantages, such as: 
minimum time consumption with less number of exper-
iments, less control effort, and the ability to solve prob-
lems of nonlinear optimization efficiently [16]. Among the 
investigations that have applied an ANN model combined 
with relevant training algorithms oriented to the predic-
tion of desalination processes, there are those published by: 
Mahadeva et al. [17] implemented an artificial neural net-
work to predict the production of a desalination plant based 
on reverse osmosis. The combination of the softmax-pure-
lin training function in the hidden and output layers were 
effective. In the results, the ANN model obtained superior 
simulation values (R2 = 99.4%, Error = 0.003) compared to 
existing models. Mahadeva et al. [18] presented a model for 
the performance prediction of desalination plants using an 
artificial neural network with an unconventional optimiza-
tion algorithm in the adjustment of weights and bias. Six 
models were developed to more accurately simulate the 
performance of a reverse osmosis desalination plant, dif-
ferently dividing the database for the ANN model learning 
process. In the results, a hybrid model of grey wolf opti-
mizer based ANN (GWO-ANN) produced superior results 
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(R2 = 98.9%, Error = 0.007) compared to other algorithms. In 
addition to these investigations, there are the hybridizations 
of the ANN-PSO model developed to predict processes of 
water treatment desalination plants. Specifically, predicting 
the performance of the reverse osmosis process has been 
favored with the ANN-PSO technique, which generates 
greater precision than existing ANN models (with conven-
tional algorithms) because the PSO algorithm has turned 
out to be more suitable for searching for optimal solutions 
during the learning [16,19].

The advantages of optimizing desalination processes 
have been relevant, from the determination of optimal 
parameters to the reduction of operating costs, as reported 
by: Pai et al. [20] applied an artificial neural network for 
the design and optimization of a cyclic adsorption process 
through the proposal of two separate multi-objective func-
tions to maximize purity and recovery, and to maximize 
productivity and purity. Zhang et al. [21] optimized a hybrid 
system of a novel desalination plant using a multi-objec-
tive particle swarm algorithm. The results show that the 
inlet air humidity ratio or seawater temperature increases 
the performance of the system. Mahadeva et al. [22] devel-
oped multiple computational models for the prediction and 
optimization of the membrane performance of the seawater 
reverse osmosis desalination plants. The authors conclude 
that particle swarm optimization assisted artificial neural 
networks obtained the best performance. Specifically, it is 
possible to find in the literature some research works focused 
directly on the optimization of processes to degrade herbi-
cides, such as those developed by: Trovó et al. [23] described 
the optimization of a photo-Fenton process for the degrada-
tion of the herbicide paraquat. In the results, it was shown 
that by obtaining optimal concentrations of Fe and H2O2 the 
removal of the herbicide was increased. Zazou et al. [24] 
studied the comparison of the electrochemical oxidation 
of an herbicide proposing a parametric optimization. The 
results showed that the optimization of some experimental 
parameters was essential to generate a higher degradation 
efficiency. Dargahi et al. [25] analyzed experiments based 
on the central composite design to optimize parameters of 
an electrocatalytic process in the degradation of an herbi-
cide. In the results, high COD and TOC removal efficien-
cies were generated using optimal conditions. Hamzaoui et 
al. [26] developed an ANNi model to optimize the reaction 
time of the sonophotocatalysis process, applying the same 
database as the present work. However, due to the limita-
tion of optimizing one variable at a time, it was not feasible 
to demonstrate a significant improvement in the removal of 
herbicides. For this reason, the current work considers the 
determination of multiple variables at the same time.

Finally, this work aims to increase the degradation effi-
ciency of commercial herbicides in the shortest possible time 
by optimizing a sonophotocatalysis process using a mul-
tivariable inverse artificial neural network (ANNim). The 
COD parameter was chosen as the output value to model 
and minimize in the optimization due to its property to 
indicate the removal of active ingredients during an aque-
ous treatment. The input variables used to train the ANN 
model are: reaction time, pH, initial concentration of herbi-
cide, pollutant, ultrasound, ultraviolet radiation, catalysts 
(TiO2, K2SO4) and solar radiation. The optimization variabes 

are pH, initial concentration of TiO2, and K2SO4, established 
because they can be manipulated when starting the process 
operation. The new objective function is proposed in order 
to find more than one optimal parameter at the same time. 
To solve the multivariable function, a particle swarm opti-
mization (PSO) algorithm was adopted to obtain a response 
in the shortest possible time.

In summary, the main contributions of this paper are:

• Propose a new optimization strategy capable of improv-
ing the degradation performance of a sonophotocatal-
ysis process through the integration of computational 
models.

• Determine the combination of optimal parameters that 
minimize the chemical oxygen demand by developing 
a multivariable objective function.

• Achieve through the ANNim-PSO model the removal of 
100% of the active ingredients of commercial herbicides 
in the shortest possible time concerning other methods 
of contaminant degradation in aqueous treatment.

2. Experimental

2.1. Material and sample preparation

Alazina (30/18 LM), consisting of alachlor, atrazine and 
formulation agents as active ingredients. Gesaprim (90 GDA) 
composed of atrazine and formulating agents. Herbicides 
were obtained through direct purchase with Syngenta 
Crop Protection Inc., (USA). Pure compounds of atrazine 
and alachlor were high-performance liquid chromatog-
raphy (HPLC) grade (99.9%) and purchased from Sigma-
Aldrich. TiO2 (Degussa P25) and H2SO4 were analytical grade 
(Sigma-Aldrich). The chemicals were applied as purchased, 
without further purification. The distilled water was sup-
plied by the company Baxter México S.A.

2.2. Ultrasound photodegradation procedure

This section summarizes the experimental procedure 
(the detailed information is described by the study of 
Bahena et al. [5]). The experimental photodegradation tests 
were carried out for each herbicide using a chemical reactor 
recirculating a volume of 250 mL and a flow rate of 5.63 L/
min. The diagram of the photodegradation process integrat-
ing a jacketed ultrasonic cell (150 cm3) is shown in Fig. 1. 
The photochemical reactor has an ultrasonic probe (500 W, 
20 kHz, Cole-Parmer), which is controlled by temperature 
with the recirculation of water. The process also contains 
a polypropylene flow centrifugal pump (Cole-Parmer) 
and an ultraviolet lamp, which is 44 cm long and 3 cm in 
diameter (15 W, 352 nm, Cole-Parmer). A stream of oxygen 
was supplied to the experimental sample by the ultrasonic 
cell. The experimental samples were extracted at differ-
ent degradation time intervals to analyze the concentra-
tion of atrazine and alachlor through HPLC. To control 
the experimental tests, it was necessary to carry out sam-
pling, removing less than 10% of the total volume and fil-
tering according to what was collected before the analy-
sis. The chemical oxygen demand (COD) was determined 
using standard methods and tubes within the concentration 
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range of 0–150 mg/L and 0–20 mg/L [27]. Table 1 shows the 
parameters established in the experimental tests during 
the operation of the sonophotocatalysis process.

3. Simulation methodology using artificial neural 
networks

3.1. Development of ANN

The artificial neural network (ANN) is a computational 
tool used to simulate simple (linear) and complex (non-lin-
ear) behaviors. The most used type in the configuration of 
ANNs models is the multilayer perceptron with feedfor-
ward, applying one or more neurons in the hidden layer. 
The development of the ANN model is determined through 
three main layers, structured as: input layer, hidden layer 
and output layer. The data obtained from the experimen-
tal tests of the sonophotocatalysis process enter the input 
layer to generate coefficients (weights and bias) and later, 

transmit information (ns) in the neurons of the hidden 
layer, as described in Appendix A.

Once the information has been transmitted in the hid-
den layer, transfer functions are applied to model the behav-
ior internally. In this work, a hyperbolic tangent sigmoid 
(TANSIG) function was used, which produces an output 
with an interval of [–1 to 1]. In order to compare the adapt-
ability of the data with the appropriate transfer function, 
the logarithmic sigmoidal (LOGSIG) function was applied, 
which generates an output with an interval from [0 to 1], 
given by Eqs. (2) and (3) in Appendix A. For the output layer, 
it is common to use a linear transfer function (PURELIN) to 
represent the simulated data (Out) by integrating the coef-
ficients obtained during the learning process in the hid-
den and output layer (Wo, b2). The network output can be 
represented using a TANSIG function, as follows:

Out PURELIN TANSIG Wi� � � �� ��
��

�
��
�� �� � � �W b bs k k s0 1 2, ln  (1)

The learning process is a fundamental part of the devel-
opment of the ANN model. To carry out this process effec-
tively, the input variables were normalized in an interval of 
[0.1–0.9] in order to facilitate the obtaining of coefficients. 
The equations that represent the development of the ANN 
model, as well as the normalization of the data, are described 
in Appendix A. Fig. 2 shows a schematic of the ANN 
model using the experimental variables obtained from the 
sonophotocatalysis process.

In the training phase, the backpropagation algorithm 
(BP) effectively carries out the ANN model’s learning pro-
cess, adjusting the connections between feed-forward lay-
ers and with each layer sequential to the next. With the 
application of this algorithm, it is possible to minimize the 
error of the experimental value against the simulated value 
through the layers of the ANN. In this work, the experimen-
tal data were divided into training with 60%, test 20% and 
validation 20%. Among the backpropagation algorithms 
most used in ANNs models, the Levenberg–Marquardt 

Fig. 1. General diagram of the photochemical reactor configured for the removal of herbicides using ultrasound.

Table 1
Experimental parameters used for the degradation of her-
bicides by a sonophotocatalysis process

No Input layer variable Abbreviation Execution 
interval

1 Reaction time (min) Time 0–480
2 pH pH 1–5
3 Initial concentration of 

herbicide
mM 0.1540–0.3090

4 Pollutant Contaminant 1–9
5 Ultrasound (kHz) Us 0–20
6 Ultraviolet radiation 

(nm)
UV 0–352

7 TiO2 (mg/L) TiO2 0–300
8 K2SO4 (mM) K2SO4 0–13
9 Solar radiation (W/m2) SR 0–820
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optimization algorithm stands out, which has been applied 
to generate an excellent fit in water treatment processes and 
to establish the number of optimal neurons in the hidden 
layer in processes related to the elimination of turbidity 
in water [28,29]. The root mean square error (RMSE) was 
used to determine the minimum error between the input 
data and those generated by the ANN model during the 
learning process. Fig. 3 shows the diagram of the training 
cycle that the ANN follows until finding the minimum 
error of the simulated value and the experimental value. 
The development steps of the BP algorithm are based on the 
description provided in [30]. All the calculations applied 
for the development of the ANN model were performed 
with MATLAB R2014a (ANN toolbox).

3.2. Evaluation of the ANN model

The ANN model is validated through statistical criteria 
to provide certainty regarding the effectiveness of the sim-
ulation. The statistical criteria chosen were: the coefficient 
of determination (R2) and the mean absolute percentage 
error (MAPE). These criteria corroborate the correlation of 
the experimental data with respect to the simulated data, as 

well as establish the difference between the two pairs of data. 
Eqs. (2) and (3) describe R2 and MAPE, respectively.
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1
 is the average of the value; xexp is the 

experimental value and ysim is the output value obtained by 
the model ANN.

The statistical criteria previously described can provide 
a correlation between experimental and simulated data. 
However, to determine the good fit of the ANN model, it 
is possible to apply the paired t-test to compare the means 
of two dependent variables. The paired t-test is defined 
by proposing the following hypotheses:

Fig. 2. Scheme of the procedure used for learning the ANN model based on the experimental variables of the sonophotocatalysis 
process.
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The null hypothesis Ho is that the sample mean of the 
differences is zero. Therefore, there is no statistically signif-
icant difference between the experimental data and those 
obtained by the ANN model.

The alternative hypothesis Hi is that the sample mean of 
the differences is nonzero. Therefore, there is a statistically 
significant difference between the experimental data and 
those obtained by the ANN model.

For the null hypothesis accepted, the value obtained 
by Eq. (4) must be less than the critical value (Tc) obtained 
from tables [31].

t d
sd

=  (4)

where s s nd d= 2 /  and sd is the variance of the difference 
between the experimental data and those obtained by the 
model ANN and d  is the average of difference between 
each pair of data.

3.3. Direct ANN model proposed to simulate the COD value

A feed-forward type ANN model was developed apply-
ing an architecture with nine neurons in the hidden layer. 
During the degradation of commercial herbicides, the 
process reached a COD value with an interval of [0.07–1], 
which was simulated by the ANN model. Table 2 compares 
different transfer functions and architecture configurations 
employed by the ANN model to determine the number of 
optimal neurons. During the learning process, finding the 
neuron number in the hidden layer is decisive to repre-
sent the output to be simulated. The simulation accuracy 
improves gradually by increasing the number of neurons in 
the hidden layer. The gradual exposure of the results gen-
erated by applying the neuron number from 1 to 10 in the 
hidden layer allows the identification of the optimal point 
and, in turn, the beginning of overlearning. Therefore, the 
optimal architecture according to the statistical criteria was 
9-9-1 with a RMSE = 0.0414. Establishing the optimal num-
ber of neurons in the hidden layer has a significant role in 
the design of the ANNim model due to the direct relation-
ship that exists with the precision of the simulation. This 
process is essential to obtain coefficients with a good fit 
and, in turn, provide reliable values for the development of 
the subsequent optimization process. The ANN model was 
fixed with a hidden layer, the implementation of a multi-
layer neural network may require more time and compu-
tational effort, degrading the speed of convergence [32–34]. 
This factor is critical for the effective fit of the coefficients 
and in the search for the optimal parameters when solv-
ing the objective function. The hyperbolic tangent transfer 
function demonstrated better adaptation to the data type 
compared to the logarithmic function.

With the optimal architecture confirmed, it is critical to 
verify that the partitioning of data into training, testing, and 
validation is adequate. Table 3 shows the results obtained 
by testing various percentages in the division of the data. 
The partition of 60% for training, 20% for testing, and 20% 
for validation proved to have the best impact in minimiz-
ing error and good correlation between the experimental 
and simulated data. Fig. 4 shows the agreement between 

Fig. 3. Flowchart to represent the development of the back-
propagation algorithm during the learning of the ANN model 
(based on Mahadeva et al. [30]).

Table 2
Comparison of transfer functions and architectures to de-
termine the best ANN model

Architecture 
ANN

Number 
of neurons

Epoch RMSE R2 RMSE R2

TANSIG LOGSIG

09-1-1 1 1,000 0.0999 0.7089 0.0945 0.789
09-2-1 2 1,000 0.0931 0.7348 0.0909 0.817
09-3-1 3 1,000 0.0888 0.7415 0.0837 0.8186
09-4-1 4 1,000 0.0659 0.7526 0.0696 0.821
09-5-1 5 1,000 0.0599 0.8073 0.0627 0.8496
09-6-1 6 1,000 0.0522 0.8325 0.0558 0.8549
09-7-1 7 1,000 0.0521 0.8856 0.0548 0.8365
09-8-1 8 1,000 0.0482 0.9568 0.0469 0.8436
09-9-1 9 1,000 0.0414 0.9723 0.0459 0.9665
09-10-1 10 1,000 0.0447 0.968 0.048 0.9630
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the experimental and simulated data with a R2 = 0.9723 and 
MAPE value of 5.29%. Table 4 presents the results of the 
paired t-test, where the null hypothesis is accepted with 
a confidence level of 95%. Therefore, it is possible to con-
clude that the fit of the data was satisfactory, considering the 
mean of the experimental data and those obtained by the 
ANN model as similar.

Once the ANN model has been evaluated, it can 
be applied to represent the simulated data analytically 
(coupling the coefficients from Table 5), as shown by the 
following equation:

COD �
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where s is the neurons number in the hidden layer (s = 9), 
k is the neurons number in the input layer (k = 9), and 
Wi(s,k) and b

s1� �
 are weights and biases, respectively.

To verify the accuracy of the ANN model, Eq. (5) was pro-
grammed to simulate the COD value (as shown in Fig. 5). 
Four experimental tests with different operating conditions 
were chosen due to their effectiveness during the deg-
radation of commercial herbicides. The good agreement 
between both data confirms that the ANN model is solid 
to continue with the optimization strategy.

Table 3
Determining the best data partition for training the ANN model

Data division Architecture ANN Epoch RMSE R2 RMSE R2

Train Test Validation TANSIG LOGSIG

80% 10% 10% 09-9-1 1,000 0.0420 0.9718 0.0421 0.9713
70% 15% 15% 09-9-1 1,000 0.0440 0.9686 0.0443 0.9685
60% 20% 20% 09-9-1 1,000 0.0414 0.9723 0.0459 0.9665
50% 25% 25% 09-9-1 1,000 0.0544 0.9522 0.0505 0.9588

Fig. 4. Correspondence between experimental and simu-
lated data through the coefficient of determination and mean 
absolute percentage error.

Table 4
Results of the paired t-test to determine the statistical sig-
nificance between the experimental and simulated data

Paired t-test

t [Inflicted Eq. (4)] 0.76
Tc (Inflicted from statistical tables 95%) 1.96
Comparison 0.76 < 1.96

Null hypothesis H0 is accepted " "expx y≈ model

Table 5
Coefficients obtained from the best ANN model

Neurons Weights Bias

Wi Wo b1 b2

S k1 k2 k3 k4 k5 k6 k7 k8 k9 Output layer

1 –2.0970 0.6484 –3.2035 4.8537 –2.9265 –3.1246 1.5114 –2.7757 3.1004 2.8585 –3.5603 6.2647
2 –0.0510 –0.2693 0.8393 6.0571 6.7860 –0.5380 –0.5094 1.9449 1.5005 1.0870 –7.9669
3 5.3752 4.3615 0.8149 4.7770 –5.2310 –1.5314 4.0720 –1.5212 –2.0809 –0.1806 –3.7015
4 –1.0185 0.2531 –2.5121 4.8007 –1.3469 –2.0247 3.8597 2.1990 0.0730 5.3151 0.2341
5 0.4070 –0.3006 0.2712 –0.3582 –6.6473 4.5353 3.7563 3.3936 –2.6900 –1.1609 –1.6706
6 1.6445 –0.4368 1.1008 –5.2458 –2.5064 –5.9454 –1.2695 2.6211 0.6747 3.7514 2.6434
7 –1.6707 –0.0584 –1.0165 1.8453 –7.6288 –0.8201 4.7612 –1.0470 1.1476 –2.0375 0.9336
8 26.7558 –0.0881 0.1750 –0.0618 –0.1730 –0.1293 –0.2840 0.0089 0.4462 –4.3949 –0.9266
9 1.7985 0.1848 –0.0218 0.1676 8.8390 –3.7220 –0.9209 0.3314 0.4636 –4.4213 0.4479
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4. Optimization strategy methodology

4.1. Development of the ANNim model proposed to improve the 
sonophotocatalysis process

The development of the ANNim model consists of 
inverting the ANN model, previously trained in order to 
obtain the specified output value. This optimization strat-
egy has been applied in thermal processes to increase the 
efficiency of an absorption thermal transformer, as well as 
to improve the performance of a solar parabolic trough col-
lector [9,35]. The ANNim model is focused on providing a 
series of optimal parameters through a multivariable objec-
tive function. Fig. 6 shows that from the coefficients obtained 
during the training of the ANN model, the multivariable 
objective function is proposed. During this step, the vari-
ables to be optimized to improve the degradation process are 

Fig. 6. Schematic diagram of the ANNim model proposed to increase the degradation efficiency of commercial herbicides by 
sonophotocatalysis.

Fig. 5. Verification of the ANN model applied in four experi-
mental tests with different operating conditions.
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defined. Eq. (6) describes the integration of the input variables of the sonophotocatalysis process, as well as the variables 
to optimize based on the desired COD.
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In Eq. (6) pH, TiO2 and K2SO4 were chosen as variables to 
optimize, because these parameters can be modified at the 
start of each experimental test. Another reason is the close 
relationship that catalysts present at different pH values 
with respect to the degradation of herbicides. The search 
restrictions applied for each variable to be optimized cor-
respond to the minimum and maximum values used 
experimentally in order to contemplate all the conditions 
obtained from the process.

1 5≤ ≤pH  (7)

0 3002≤ ≤TiO  (8)

0 134≤ ≤K SO2  (9)

In this work, the desired COD value must be reduced as 
a function of time to successfully reflect the increase of the 
removal efficiency applied to a specific experimental test. 
The proposed ANNim model is difficult to solve instantly 
by conventional algebraic methods. This is due to the num-
ber of coefficients used in each hidden layer and the num-
ber of variables to optimize. Therefore, to minimize the 
multivariable objective function, it is necessary to couple an 
approximation algorithm focused on generating a solution in 
the shortest possible time.

4.2. Particle swarm optimization

The swarm concept is based on the collective behavior 
derived from the social relationship between different ani-
mal species, such as birds, fish, bees, or ants, for example, 
where these individuals are taken as simple and homoge-
neous agents that perform basic tasks and the Interaction 
between these agents does not have a central control [36]. To 
find the global solution to the problem, the particles or agents 
define trajectories in the solution space, within this space, 
it is iteratively updated based on the equation of motion, 
which is described as:

x t x t v ti i i�� � � � � � �� �1 1  (10)

From Eq. (10) different parameters are defined, among 
them are the inertia or moment of the particle’s movement. 
The second-term is known as the cognitive component from 
this it is explained that the particles return to their best 
positions previously found. The last of these components 
is the social component from this the tendency of a particle 
to move to the best position of the whole of the swarm is 
identified.

v t t v t c p x t R

c g x t R
i i i i i

i

�� � � �� � � � � � � �� �
� � � �� �

1 1 1

2 2

�

 (11)

In addition, the algorithm has two constants called c1 
and c2, these are found within the real numbers, with these 
coefficients the magnitude of the steps of the particles is 
regulated in the best of the directions, taking the best per-
sonal and global mark in the gutter.

4.3. Adaptation of the PSO algorithm to solve the ANNim model

Fig. 7 shows the adaptation of the PSO algorithm to solve 
the multivariable objective function [Eq. (6)]. With this cou-
pling, the best solution can be determined in a short com-
putational time. The PSO algorithm starts by setting initial 
parameters for the particles corresponding to the first gen-
eration. Subsequently, these will move according to inertia 
and the best position within the space of possible solutions. 
The ANNim-PSO adaptation is efficient when the multivari-
able objective function is minimized as close to zero, obtain-
ing a series of optimal parameters that satisfy the desired 
COD value.

The justification for coupling the PSO optimization 
algorithm depends on its balanced effectiveness in solving 
objective functions, which may contemplate a search with 
restrictions or specifications. On the other hand, it is possi-
ble to couple new advanced optimization algorithms such 
as GWO and Whale Optimization Algorithms (WOA) in 
future research. However, when choosing an optimization 
algorithm, it is necessary to consider the convergence of 
the solutions, the precision, and, above all, the computation 
time. Therefore, this research applied the PSO algorithm 
due to the stabilization that characterizes it between con-
vergence and computational performance in the search for 
optimal parameters.

5. Results and discussion

5.1. Validation of the adaptation of the PSO algorithm to the 
ANNim model

The validation of the ANNim-PSO model is an import-
ant procedure in order to guarantee the correct application 
of the optimization strategy. The PSO algorithm is subjected 
to a rigorous demonstration, which consists of determining 
all the input variables in a specific experimental test based 
on the desired COD value. The statistical criterion of mean 
absolute error (MAE) was applied as a measure to deter-
mine the error between the experimental data and those 
found by the ANNim-PSO model. Table 6 shows a com-
parison between the experimental data and those obtained 
by the ANNim-PSO model, gradually establishing the total 
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of the input variables of the process. The validation of the 
ANNim-PSO model had a maximum error and a computa-
tional time that increased according to the number of vari-
ables, reaching a value of 0.426 and 2.52 s. However, the 
maximum error obtained when optimizing three variables 
at the same time was 0.136, which is satisfactory consider-
ing the number of variables to optimize in this work. With 
these criteria, it is possible to corroborate the correct adap-
tation of the ANNim-PSO model to continue with the appli-
cation focused on increasing the removal efficiency of the 
sonophotocatalysis process.

5.2. Optimization of one variable at a time using ANNim-PSO

From Fig. 6, the ANNim-PSO model was applied to 
the experimental test that obtained the minimum value of 
COD. Table 7 shows in detail the experimental parameters 
used during the removal of herbicides with the best mini-
mization of COD. The parameters to optimize were: pH and 
the concentration of the catalysts (TiO2 and K2SO4). These 
variables were chosen because they can be manipulated at 
the beginning of each experimental test and, furthermore, 
these parameters were not modified in the research’s by 
Bahena et al. [5] and Hamzaoui et al. [26]. The application 

of the ANNim-PSO model was gradual in this section, opti-
mizing one variable at a time. Fig. 8 shows the minimiza-
tion of the COD value by optimizing a) the pH value, b) the 
initial concentration of TiO2 and c) the initial concentra-
tion of K2SO4. With the results generated, it is important to 
highlight that each of the optimized variables improved the 
removal of herbicides compared to those carried out experi-
mentally (~84% removal). The determination of the optimal 
initial concentration of TiO2 achieved a removal of 100% in 
55 min when using 250 mg/L as opposed to the 200 mg/L 
established experimentally. Subsequently, the optimal ini-
tial concentration of 3 mM by the K2SO4 catalyst reached 
a 100% removal in 115 min. Finally, the optimum value of 
pH = 5 achieved a removal of 88% after 150 min.

The optimum value of TiO2 had a greater impact on the 
other parameters in the removal of the ingredients because 
the ultraviolet light provides the necessary energy on the 
appropriate surface of the catalyst, improving the rate of the 
chemical reaction. The removal of contaminants obtained 
from the optimal concentration of the K2SO4 catalyst is total, 
due to the stabilization it provides in the deposition during 
the production of anionic species resulting from degrada-
tion. The degradation of the contaminants was not complete 
when determining only the optimal pH value. However, 

Fig. 7. Scheme of the integration of the PSO algorithm to the ANNim model to determine the multiple optimal input variables 
of the sonophotocatalysis process.
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it overcomes the experimentally obtained degradation, 
allowing the molecules to absorb more energy from visible 
and ultraviolet light.

5.3. Multivariable optimization using ANNim-PSO

Table 8 presents the application of the ANNim-PSO 
model to minimize the COD value by optimizing two vari-
ables at the same time. The variables chosen were in consid-
eration of the previous results, where the TiO2 value achieved 
a total removal in the shortest possible time and the pH value 
in order to corroborate the activation it causes in the cata-
lyst. The results indicate that supplying an optimum value 
with a pH of 5 and a concentration of the TiO2 catalyst of 
250 mg/L is feasible to obtain a removal of 100% in 27 min. 
This optimization with two variables produces an effect that 
favors conditions to increase the light absorption in the TiO2 
molecules, which allows degradation in less time.

Subsequently, three input variables of the process were 
optimized at the same time. Table 9 shows the increase in 
herbicide removal optimizing three input variables of the 
process by applying the ANNim-PSO model. The determi-
nation of the three optimal variables achieves a total removal 
in 5 min using a pH of 5, an initial concentration of TiO2 of 
250 mg/L and 3 mM of K2SO4. Fig. 9 shows the experimental 
test with the best COD reduction reported by Bahena et al. 
[5] and the data optimized by the ANNim-PSO model. The 
effect of the combination of the optimal parameters signifi-
cantly improves the rate of the reaction. The absorption of 
energy produced by the pH and the TiO2 accelerates the 
degradation. The optimal value of the K2SO4 concentration 
regulates the superficial acidity controlling the produc-
tion of the resulting species and the redox capacity. In this 
way, the application of the optimization strategy allowed 
extrapolating results that were not experimentally tested, 
obtaining better removal values and in less time.

Table 10 shows the application of other methods of 
removal of commercial herbicides in harassment treat-
ment compared to the present work. In agreement with 
other research works presented in Table 9, the current work 
obtained good results when a pH value of 5 is established 
in the presence of the TiO2 and K2SO4 catalysts.

Finally, the fruitful findings of this research can be 
summarized as follows:

• The new optimization strategy for the degradation of 
active ingredients in commercial herbicides turned out to 
be adequate, minimizing the value of COD by integrating 
powerful computational models such as neural networks 
and meta-heuristic optimization algorithms (obtaining 
a value of MAE = 0.426 and a time of 2.52 in the vali-
dation of the hybridization of the ANNim-PSO model).

• The hybridization of the ANNim-PSO models produced 
an optimal combination of parameters (using a pH of 5, 
an initial concentration of TiO2 of 250 mg/L and 3 mM 
of K2SO4) that allowed solving an objective function, 
which consisted in exploring parameters not tested 
during the experimental process.

• The total removal of the active ingredients of commer-
cial herbicides was in a short time (5 min) compared to 
other degradation methods (especially the one reported 
by Cabrera et al. [41]).Ta
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6. Conclusion

This paper presents the optimization of a sonophotoca-
talysis process based on a new optimization strategy, which 

increases the removal efficiency of commercial herbicides 
in aqueous treatment. The ANNim optimization model 
was developed to determine the optimal input values of 
the process, which were: pH and concentration of catalysts 
(TiO2 and K2SO4). The objective function was proposed as 
a function of reducing the COD value applied in the best 
test obtained experimentally. To achieve this, an ANN 
model was trained using the input variables of the process 
and as an output to simulate the COD value. Considering 
that the ANN model must have good precision and, in 
turn, generate a number of adequate coefficients to carry 
out the optimization strategy effectively, it was enough to 
train an architecture with a hidden layer. The best repre-
sentation was obtained by integrating 9 neurons and apply-
ing a hyperbolic tangent sigmoid function (TANSIG) in 
the hidden layer, reaching an R2 of 0.9723 and a MAPE of 
5.29%. To demonstrate the good representation of the ANN 
model, it was concluded by means of a paired t-test that 
there is no significant difference when comparing the mean 
of the real and simulated data. The simulation’s precision 
allows minimizing the COD value through the optimiza-
tion strategy with strict adherence to the actual operating 
conditions of the sonophotocatalysis process.

The coefficients generated from the ANN model were 
later used for the development of the ANNim model. 
However, the objective function when considering multi-
ple variables to optimize at the same time, it was necessary 
to adapt a particle swarm optimization (PSO) algorithm in 
order to search for optimal parameters in the shortest possi-
ble time. The choice of this algorithm rests on the speed with 
which it converges to find an optimal value. The ANNim-
PSO model was applied in a specific experimental test to 
verify its effectiveness in the search for optimal parame-
ters. In this step, the correct coupling between the ANNim 
model and the PSO algorithm was reflected, determining all 
the input variables of the process in a time of 2.52 s and an 
MAE of 0.426.

Once the good coupling of the ANNim-PSO optimi-
zation strategy had been validated, the removal efficiency 
was gradually increased using the best experimental test 
obtained during the operation of the process. Optimizing 
one variable at a time, the determination of the initial con-
centration of the TiO2 catalyst obtained a removal efficiency 
of 100% in a time of 55 min, followed by the concentration 
of the K2SO4 catalyst in a time of 115 min and the pH with 
88.17% removal in a time of 150 min. The specification of 

Table 7
Experimental data applied to optimize the COD value using the ANNim-PSO method

Time pH Concentration Pollutant Ultrasound Ultraviolet radiation TiO2 K2SO4 Solar radiation CODEXP Removal (%)

0 2.3 0.193 0.9 20 352 200 0 0 1 0
4 2.3 0.193 0.9 20 352 200 0 0 0.794 20.6
15 2.3 0.193 0.9 20 352 200 0 0 0.526 47.4
30 2.3 0.193 0.9 20 352 200 0 0 0.449 55.1
60 2.3 0.193 0.9 20 352 200 0 0 0.374 62.6
90 2.3 0.193 0.9 20 352 200 0 0 0.306 69.4
120 2.3 0.193 0.9 20 352 200 0 0 0.229 77.1
150 2.3 0.193 0.9 20 352 200 0 0 0.159 84.1

Fig. 8. Application of the ANNim-PSO model to improve her-
bicide removal efficiency by optimizing one variable at a 
time; (a) the pH value, (b) the initial concentration of TiO2 and 
(c) the initial concentration of K2SO4.
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the catalyst concentration TiO2 = 250 mg/L could generate 
the total removal of the active ingredients of the commercial 
herbicide according to the ANNim-PSO model. A possible 
explanation for the significance of the optimal value consists 
of the interaction of UV light scattering in high concentra-
tions of TiO2, leading to a decrease in the surface area to 
absorb light and accelerate the reaction. The optimal pres-
ence of the catalyst concentration K2SO4 = 3 mM can improve 
the degradation of pollutants by leveling the surface acidity 
and redox capacity. On the other hand, the optimum value 
of pH = 5, indicates that the degradation is faster in acid 
conditions, favoring the speed of the catalytic reaction.

Optimizing two variables at the same time, 100% removal 
was achieved in a time of 27 min due to the effect of pH on 
the TiO2 catalyst. The optimal combination of pH = 5 with a 
TiO2 concentration = 250 mg/L may have points to consider 
on the catalyst surface, especially for the effective adsorp-
tion of the compound. In addition, it is possible to present 
an increase in the number of photons absorbed in UV light 
due to the higher concentration of the catalyst.

Optimizing three variables, 100% removal was 
obtained in 5 min due to the effect of pH on both catalysts 
(TiO2 and K2SO4). The addition of the optimal concentration 
of K2SO4 = 3 mM in the combination obtained from pH = 5 
and TiO2 = 250 mg/L produced a total removal of the active 
ingredients, reporting the shortest time compared to other 
published works. This result can be justified by the impreg-
nation of K2SO4 increasing the superficial concentrations of 
TiO2, based on the decomposition of the atomic concentra-
tion of potassium. The deposition of K2SO4 on the catalyst 
could involve direct intervention in the exposure of active 
sites during the adsorption process, improving the reaction 
rate. Therefore, the photodegradation of the active ingredi-
ents of the commercial herbicides was forced through the 
optimal parameters found and conserving the effective use 
of ultrasound and photocatalysis.

Finally, it is important to highlight that the results 
obtained are the product of combinations of parameters 
determined by the ANNim-PSO optimization strategy 
and must be validated with future experiments. However, 
developing the optimization strategy in other processes can 
support the deduction of possible results by determining 
multiple optimal parameters to improve the operation of 
technologies related to desalination and water purification.

Table 8
Increase in the removal efficiency of herbicides by determining two optimal values: pH and the concentration of the TiO2 catalyst

Time Optimal 
pH

Concentration Pollutant Ultrasound Ultraviolet 
radiation

Optimal 
TiO2

K2SO4 Solar 
radiation

COD 
ANNim-PSO

Removal 
(%)

0 5 0.193 0.9 20 352 250 0 0 1 0
4 5 0.193 0.9 20 352 250 0 0 0.4344 56.56
15 5 0.193 0.9 20 352 250 0 0 0.1277 87.23
27 5 0.193 0.9 20 352 250 0 0 0 100

Table 9
Increase in the removal efficiency of herbicides by determining three optimal values: pH and the concentration of catalysts 
(TiO2, K2SO4)

Time Optimal 
pH

Concentration Pollutant Ultrasound Ultraviolet 
radiation

Optimal 
TiO2

Optimal 
K2SO4

Solar 
radiation

COD 
ANNim-PSO

Removal 
(%)

0 5 0.193 0.9 20 352 250 3 0 1 0
1 5 0.193 0.9 20 352 250 3 0 0.19034 80.96
2 5 0.193 0.9 20 352 250 3 0 0.13859 86.14
3 5 0.193 0.9 20 352 250 3 0 0.09065 90.93
4 5 0.193 0.9 20 352 250 3 0 0.04627 95.37
5 5 0.193 0.9 20 352 250 3 0 0 100

Fig. 9. Reduction of the COD value profile of commercial 
herbicides as a function of time applying the variation of 
the parameters experimentally and those obtained by the 
ANNim-PSO model.
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Appendix A

The development of an artificial neural network is 
described by following equations.

n bs s s s k k s� � � � � � � �� � � � � � � �Wi Wi Wi, , ,ln ln ... ln1 1 2 2 1  (A1)

where k represents the number of input variables, In is the 
input variable, s is the number of neurons in the hidden 
layer, Wi are weights generated between the input layer 
and the hidden layer and b1 is the bias produced by each 
neuron applied in the hidden layer.

The transfer functions are given by the following:
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The data used for the training of the ANN model were 
normalized by the following equation:

ln .
ln ln
ln ln
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where Inexp represents the experimental value obtained 
from the process, Inmin is the experimental minimum value, 
Inmax is the maximum experimental value and InNorm is the 
normalized value.
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