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a b s t r a c t
Agricultural waste materials from common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguicu-
lata subsp. unguiculata) vines were investigated as adsorbents to remove methylene blue (MB) from 
aqueous solution. Both vines exhibited efficient adsorption of MB. Characterization of the adsorbents 
was performed by infrared spectroscopy, scanning electron microscopy and N2 adsorption at 77 K. 
Composition was determined by the van Soest method. The adsorption isotherms of the vine adsor-
bents for MB fitted a Langmuir model well and the kinetics followed a pseudo-second-order model. 
The adsorption capacities of common bean and cowpea vines for MB were 181.82 and 144.93 mg/g, 
respectively, and the adsorption was a spontaneous and exothermic process. The high adsorption 
performance was mainly due to the hierarchical pore structure and abundant surface functional 
groups of the vine materials. The adsorption mechanism involved pore filling, electrostatic attraction, 
hydrogen bonding, π–π interactions, ion-exchange and n–π interactions. The results revealed that 
common bean and cowpea vines can be used as effective low-cost adsorbents in the treatment of 
contaminated wastewater.
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1. Introduction

In the process of industrial treatment, about 20% of dyes 
are discharged into wastewater. Dye wastewater often con-
tains dye concentrations of 10–200 mg/L [1]. Methylene blue 
(MB) is a cationic dye that is widely used in colorants and 
medicine. The dye has high chroma and is poorly biode-
gradable. Discharge of wastewater containing dye without 
treatment into bodies of water will cause serious ecologi-
cal problems. There is therefore an urgent need to remove 
residual organic dyes from wastewater. Adsorption is an 
effective method to remove dyes. The capacity and cost of 
the adsorbent are the most important factors to determine 
the feasibility of an adsorption process. Activated carbon is 

one of the most important adsorbents in wastewater treat-
ment, but high cost limits its application on an industrial 
scale. Identification of cheap, abundant, renewable adsor-
bents is therefore highly desirable. Recently, various agri-
cultural solid wastes [2,3], including peel [4–8], shell [9–11], 
seed [12–14], husk [15–18], leaves [19–28], corn stalk [29], 
straw [30,31], bagasse [32] and bloom [33] have been used 
to remove dyes from water. Biomass adsorbent effectively 
reduces the cost of the adsorption process.

However, the common problem is that the adsorption 
capacity is still too low to scale up. Therefore, in order to 
increase the adsorption capacity, the biomass needs to be 
treated with acid or alkali.
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In China, large numbers of beans are planted, including 
common bean and cowpea. Because beans are grown for 
fruit, the vine part is usually unwanted and considered 
as waste. Traditionally, the vines have been discarded or 
burned, except for a small amount used as animal feed. 
However, burning of vines causes environmental pollution 
and has now been forbidden. Consequently, management of 
vine waste has become an urgent problem. Bean vines are 
rich in lignocelluloses that are chemically stable and suitable 
for use as adsorbents. However, there have been few studies 
on the application of bean vines as adsorbents. Only common 
bean waste has been used as an adsorbent to remove lead(II) 
ions [34,35]. Bean vines have low commercial value, so find-
ing an industrial use for them would improve the value chain 
of bean production.

Herein, bean (common bean and cowpea) vines were 
investigated for removal of MB from water. The key process 
parameters affecting adsorption were studied, including MB 
concentration, temperature, hydraulic retention time and 
the solution pH. To understand the kinetics and thermody-
namics of the adsorption, isotherms, kinetic models and the 
removal thermodynamics were elucidated.

2. Materials and methods

2.1. Chemicals and reagents

MB was obtained from Shanghai Chemical Reagent 
Factory (Shanghai, China). All other reagents were of ana-
lytical grade and purchased from Lanyi Chemical Reagent 
Company (Beijing, China).

2.2. Preparation of adsorbents

Common bean and cowpea vines were collected after 
harvest from a local farm (Beijing, China). The vines were 
washed and dried in an oven at 70°C to constant weight. The 
dried vines were ground and denoted as common bean vine 
(CBV) and cowpea vine (CV).

2.3. Characterization

The morphology and structure of the vines were ana-
lyzed by scanning electron microscopy (SEM, Sigma 300, 
Zeiss, Germany) and N2 adsorption (Micromeritics ASAP 
2020, USA) at 77 K. Fourier-transform infrared (FT-IR) 
spectroscopy (PerkinElmer, USA) was used to characterize 
functional groups on the vine materials. The chemical com-
position (cellulose, hemicellulose and lignin) of the vines 
was determined using the van Soest method according to the 
literature [36]. The pH of zero point charge (pHzpc) values of 
the vines were determined using the method described in the  
literature [37].

2.4. Adsorption experiments

The vine powders (50 mg) and MB solutions (100 mL) at 
different concentrations were placed in 250 mL glass flasks. 
The flasks were shaken in a thermostatic water bath until 
equilibrium. The concentration of MB was determined by 
UV-Vis spectrophotometry (Shimadzu UV-3100, Japan) at a 
wavelength of 640 nm, with reference to a calibration curve. 

The adsorbed amount at time t, qt (mg/g), and at equilibrium, 
qe (mg/g), were calculated according to:
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where Co, Ct and Ce are the MB concentrations (mg/L) at start, 
time t and equilibrium, respectively; m (g) and V (L) repre-
sent the vine mass and MB solution volume.

2.4.1. Adsorption isotherms

The relationship between Ce and qe was fitted using 
Langmuir, Freundlich and Temkin adsorption models.

The Langmuir isotherm model can be represented by the 
following formula [38]:

C
q q K

C
q

e

e L

e� �
1

max max

 (3)

where qmax (mg/g) is the maximum adsorption and KL is the 
affinity constant, which can be obtained from the linear rela-
tionship between Ce/qe and Ce.

The Freundlich isotherm can be written as [38]:
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where the constant KF and exponent 1/n can be obtained from 
the plot of lnqe vs. lnCe.

The Temkin isotherm can be expressed as [38]:

q B K B Ce T e� �ln ln  (5)

where the constant KT and exponent B can be calculated by 
plotting qe vs. Ce.

2.4.2. Adsorption kinetics

The relationship between adsorption amount and contact 
time was fitted using pseudo-first-order, pseudo-second-or-
der and intraparticle diffusion models to predict the adsorp-
tion kinetics.

The pseudo-first-order equation is expressed as follows 
[38]:
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where k1 (h–1) is the rate constant.
The pseudo-second-order equation can be expressed as 

[38]:
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where k2 (g/mg·h) is the rate constant.
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The intraparticle diffusion model can be represented as 
[38]:

q k t Ct i� �1 2/  (8)

where ki (mg/g·h–1/2) is the rate constant for the intraparticle 
diffusion model, t1/2 is the square root of the time and C is 
related to the thickness of the boundary layer.

All the tests were conducted three times and reported as 
the mean.

3. Results and discussion

3.1. Properties of the adsorbents

Lignin, hemicellulose and cellulose have strong adsorp-
tion capacities for dyes. Lignin has polar functional groups 
that can interact with cationic species, while cellulose and 
hemicellulose contain large numbers of hydroxyl groups that 
can interact via hydrogen bonding. The high specific areas 
of CBV and CV can provide many sites for dye adsorption 
[39,40]. The characterization data for CBV and CV are shown 
in Table 1. It can be seen that the lignin, cellulose and hemi-
cellulose content of CBV and CV accounted for almost 50% 
by weight, suggesting that the materials are suitable adsor-
bents of dyes.

The pore structure of the adsorbent, which can be investi-
gate by N2 adsorption, is another important factor that affects 
adsorption capacity. As shown in Fig. 1a, the N2 adsorption 

isotherms of CBV and CV were similar. When the relative 
pressure was less than 0.02, the adsorption curve was close 
to 0, indicating that there was no micropore structure. The 
hysteresis loop at relative pressures of 0.2−0.95 results from 
the presence of mesopores. The hysteresis loop tail at relative 
pressure greater than 0.95 suggests the presence of macropo-
res. These results were confirmed by pore-size distributions 
(Fig. 1b), from which it can be seen that CBV and CV mainly 
contained mesopores and macropores, with few microp-
ores. The Brunauer–Emmett–Teller (BET) surface areas of 
CBV and CV were 4.242 and 3.880 m2/g, respectively (Table 
1), which are larger than other biomass adsorbents even if 
those materials are subjected to a high temperature of 200°C 
[41,42]. High surface area is favorable for adsorption. The 
average pore sizes of CBV and CV were 6.44 and 6.64 nm, 
respectively. The molecular diameter of MB is less than 2 nm, 
so the pore sizes of CBV and CV are suitable for adsorption 
of the dye.

The surface morphologies of CBV and CV under differ-
ent SEM magnifications are shown in Fig. 2. The structures 
of the two vines were similar, presenting rough, hetero-
geneous surfaces with protuberances, cracks and cavities 
(Fig. 2a and e). Fig. 2b and f indicate uneven and porous 
structures with some elliptical holes in CBV and CV. There 
were also some smaller holes within the elliptical holes. 
Fig. 2c and g show that the vine materials had particulate 
forms with irregular shapes and heterogeneous cavities at 
the mesoporous scale. These results are consistent with the 
nitrogen adsorption data. The macropores and mesopores 
increase the surface area of the adsorbents, which is condu-
cive to adsorption of dye molecules. At the same time, the 
large pore size enables fast diffusion of dye molecules and 
shortens adsorption equilibration time. After adsorption, 
MB molecules fill the pores and cover the surfaces of the 
adsorbents (Fig. 2d and h) which shows MB dye molecules 
are evenly distributed on the surface of CBV and CV. The 
same phenomenon occurs when MB is adsorbed on the sur-
face of activated carbon [43].

The pHzpc values of CBV and CV, which were 5.9 and 6.0, 
respectively (Fig. 3a), were determined to understand their 
surface charge properties.

Table 1
Characterization of CBV and CV

Parameter CBV CV

Cellulose (wt.%) 31.2 29.3
Hemicellulose (wt.%) 10.9 11.1
Lignin (wt.%) 6.8 5.8
SBET (m2/g) 4.242 3.880
Pore size (nm) 6.44 6.64

Fig. 1. The N2 adsorption isotherm patterns (a) and pore-size distributions (b) of CBV and CV.
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Fig. 2. SEM images of the CBV (a–d) and CV (e–h) adsorbents before (a–c, e–g) and after (d, h) adsorption.
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3.2. Adsorption performance analysis

3.2.1. Adsorption kinetics

The adsorption rate is important for determining the util-
ity of an adsorbent. Fig. 4 shows the effect of contact time 
on the adsorption of MB by CBV and CV at 30°C. Within 
5 min, the amount adsorbed rapidly exceeded 50% of the 
total adsorption capacity for various initial dye concentra-
tions. Equilibrium was reached within 120 min. The rapid 
adsorption of MB by CBV and CV was mainly due to the 
large pore size and abundant adsorption sites on the surfaces 
of the adsorbents. The adsorption capacities of CBV and CV 
decreased as the initial MB concentration was decreased. 
Three kinetic models, pseudo-first-order, pseudo-second-or-
der, and intraparticle diffusion, were used to explore the 
underlying mechanisms of MB adsorption. It was found that 
MB adsorption best fitted the pseudo-second-order model 
and the corresponding parameters are listed in Table 2.

3.2.2. Effects of concentration and temperature

To investigate the effects of MB concentration and 
adsorption temperature, the adsorption capacities of both 

CBV and CV were studied at different temperatures and 
with different initial MB concentrations (Fig. 5). The results 
indicated slightly higher adsorption by CBV than CV, prob-
ably due its higher lignocellulose content and higher BET 
surface area. The adsorption capacity was enhanced at lower 
temperatures. Langmuir, Freundlich and Temkin models 
were used to explore the mechanisms of MB adsorption 
by CBV and CV. The Langmuir model postulates a mono-
layer adsorption process in which the pore can accept only 
one MB dye molecule. The Freundlich model assumes that 
the adsorption surface is non-uniform and that adsorp-
tion is a nonlinear process. Temkin considers the interac-
tion between adsorbate and adsorbent and assumes that 
the adsorption free energy is the only function of surface  
coverage.

The Langmuir model described the results well, with 
R2 > 0.99, and the model parameters are listed in Table 3. 
This result indicated that adsorption of MB dye by CBV 
and CV was a monolayer-molecular adsorption process. 
The qmax values for MB on CBV and BV were 181.82 and 
149.25 mg/g at 30°C, respectively.

The change of Gibbs free energy, entropy (ΔS°) and 
enthalpy (ΔH°) were determined to better estimate the effect 

Fig. 3. Plots of pHzpc of vines (a) and the effects of pH on the MB adsorption by vines (b).

Fig. 4. Effects of the contact time on the adsorption of MB by CBV (a) and CV (b).
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of temperature on adsorption of MB by the adsorbents. 
The equilibrium constants KL from the Langmuir equation at 
30°C, 40°C and 50°C were used to calculate these thermody-
namic parameters [44]{Ahmad, 2011 #27}.

The free energy change of adsorption is given as:

� � � � � � � �G H T S  (9)

� � � �G RT KLln  (10)

where T is the temperature (K), and R is the ideal gas con-
stant (8.314 J/mol K); ΔH° and ΔS° were obtained by plotting 
lnKL vs. 1/T [45].

The calculated entropies, free energies and enthalpies 
of MB adsorption are presented in Table 4. The decrease of 
Gibbs free energy (ΔG° < 0) suggests that the adsorption is 
spontaneous. The negative value of ΔH° indicates that uptake 
of MB is exothermic. This is also supported by the increase of 
MB adsorption capacity as the temperature was decreased 
[46]. The increase of entropy (ΔS° > 0) indicates that disorder 
at the liquid/solid interface is increased after adsorption.

Table 2
Parameters from the pseudo-second-order model of MB adsorption by CBV and CV

Sample Initial concentration  
(mg/L)

Parameters

qe(exp) (mg/g) k2 × 104 (min) qe(cal) (mg/g) R2

CBV
53.6 80.00 28.52 81.23 0.999
106.4 132.56 7.71 135.32 0.999
177.6 157.91 24.5 158.73 0.999

CV
57.9 82.22 29.99 83.75 0.999
106.4 112.00 11.26 116.96 0.999
172.1 134.13 9.13 139.86 0.999

Fig. 5. Adsorption isotherms obtained for MB on CBV (a) and CV (b).

Table 3
Langmuir isotherm constants obtained for the adsorption of MB using CBV and CV

Sample Temperature (°C) Langmuir

qmax (mg/g) KL (L/mg) × 10−2 R2

CBV
30 181.82 5.95 0.995
40 178.57 5.05 0.995
50 175.75 3.83 0.998

CV
30 149.25 7.49 0.999
40 142.05 5.54 0.999
50 141.84 4.49 0.998
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3.2.3. Effect of pH and adsorption mechanism

Generally, adsorption involves electrostatic attraction, 
pore filling, ion-exchange, hydrogen-bonding, π–π inter-
actions, and n–π interactions. Pore filling participates in 
the adsorption of MB by CBV and CV, which can be seen 
in Fig. 2. The pH of the MB solution affects the charge on 
the adsorbent surface and the aqueous chemical properties, 
which influence the adsorption process. The adsorption 
behaviors of CBV and CV were measured at pH values of 
2–10 and the results are shown in Fig. 3b. The uptake of MB 
increased as the pH was increased. The increase was most 
obvious at pH 2–6. The pHzpc values of CBV and CV were 5.9 
and 6.1, respectively. When the pH of the solution is below 
pHzpc, the surfaces of CBV and CV are positively charged, 
resulting in strong electrostatic repulsion of cationic MB 
and decreased dye uptake. When the pH is above pHzpc, the 
surfaces of CBV and CV are negatively charged, resulting 
in strong electrostatic attraction of MB and increased dye 
uptake. Therefore, electrostatic attraction has a pivotal role 
in the adsorption of MB by CBV and CV. Since positively 
charged MB is still adsorbed by positively charged CBV and 
CV (at pH < pHzpc), ion-exchange may also be involved in the  
adsorption [47].

The FT-IR spectra of CBV and CV before and after dye 
adsorption are presented in Fig. 6. The spectra showed a 
broad peak at 3,402 cm–1 (O–H stretching vibration in car-
boxylic acid groups) together with peaks at 2,922 cm–1 (ali-
phatic C–H stretching), 1,743 cm–1 (C=O stretch of ketones, 
lactones, and carboxylic anhydrides), 1,612 and 1,635 cm–1 
(C=C olefin stretch), 1,423 cm–1 (O–H in-plane bending in 
carboxylic acid groups), 1,245 cm–1 (C–N stretching vibra-
tion in amines) and 1,077 cm–1 (C–N stretching vibration in 
amines) [22]. The O–H, C–N and C=O groups participate 
in the adsorption process, providing crucial sites for MB 
location [40]. In addition, previous studies have shown 
that such polar groups are conducive to adsorption of cat-
ionic dye by electrostatic interaction [47]. The surfaces of 
CBV and CV have hydroxyl groups that can form hydro-
gen bonds. In addition, n–π interactions may be formed 
between hydroxyl groups and the aromatic ring of MB [30]. 
All of these interactions increase the adsorption capacity. 
After adsorption, the peaks due to C=C became deeper and 
shifted from 1,612 and 1,635 to 1,601 cm–1.This change sug-
gests π–π interactions between benzene rings in MB mole-
cules occur and that formation of a conjugated structure in 
CBV and CV is conducive to adsorption [15,48]. New peaks 

at 1,386 cm–1 (C=N stretching vibration) and 1,328 cm–1 
(N–H stretching vibration) were formed after adsorption, 
which indicates that MB was adsorbed.

Table 5 compares MB removal capacities of CBV and CV 
with those of bioadsorbents derived from various plants pub-
lished in the literature. The removal capacities of CBV and 
CV were higher than those of most reported bioadsorbents. 
Consequently, CBV and CV appear to have enormous poten-
tial as dye adsorbents.

4. Conclusions

In this study, MB was effectively removed from aque-
ous solution by CBV and CV. The pore structure of the vine 
materials and functional groups on their surfaces contribute 
to good adsorption. Contact temperature, time, MB concen-
tration and solution pH affected the adsorption process. 
Adsorption of MB by CBV and CV followed the pseudo-sec-
ond-order and Langmuir isotherm models, demonstrat-
ing that the adsorption process is a monolayer adsorption. 
The maximum adsorption capacity of CBV and CV reached 
181.82 and 149.25 mg/g at 30°C, respectively. The decrease 
of Gibbs free energy and negative value of ΔH indicate that 
adsorption of MB is spontaneous and exothermic. As renew-
able, low-cost, waste agricultural by-products with good 
adsorption capacities for MB, CBV and CV are economical 
and practicable in the field of wastewater treatment.

Table 4
Thermodynamic parameters obtained for the adsorption of MB using CBV and CV

Samples Temperature (°C) ΔG° (kJ/mol) ΔS° (J/mol·K) ΔH° (kJ/mol)

CBV

30 −27.695 32.425 −17.922
40 −28.182

50 −28.339

CV

30 −28.274 24.493 −20.815
40 −28.423

50 −28.767

Fig. 6. FT-IR spectra obtained for CBV and CV before and after 
the adsorption of methylene blue from an aqueous solution.
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