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a b s t r a c t
This article reports on the implementation and use of a floc image acquisition and analysis system in 
a pilot water treatment plant to remove kaolin turbidity with a coagulant and flocculant. The system 
is based on the Hausdorff dimension (df) of the images and is used to obtain information about the 
image texture and to ensure that the flocs could be removed by the filtration system, and to use df 
values for corrections of the dosage of both chemical agents via signals with pulse width modula-
tion that feed and control dosage pumps during treatment, ensuring a continuous adjustment for 
changing water conditions, which allows for a close on-site process control and a rapid response to 
changes in the quality of the effluent.
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1. Introduction

Urban and industrial development in areas where water 
is scarce requires the search for sustainable solutions to ratio-
nally use water. In this context, one of these solutions that 
exhibits the greatest potential is the reuse of wastewater [1]. 
Treatment of wastewater requires a balance between the 
technological level and the operational complexity required 
to achieve high-quality effluent while maintaining the type 
of simplicity that allows infrequent monitoring and mainte-
nance [2]. In addition, approaches that characterise uncer-
tainties in the long term are needed, including micropollut-
ants and pathogenic microorganisms [3]. The coupling of 
big data and automation, also known as Industry 4.0, has 
the potential to solve these complex problems by increasing 
operational efficiency and improving the ability to monitor 
and control functions at reduced costs [4]. This is achieved 

by applying interconnection, information transparency, 
technical assistance, and decentralised decision making [5].

In water applications, artificial intelligence (AI), machine 
learning (ML), and smart technologies are expected to model 
and address complex problems, water applications that 
have seen notable ML utilization include water and waste-
water treatment [6], ammonia concentration and total coli-
form concentration have been predicted using supervised 
machine learning [7] and to predict water quality using 
supervised machine learning algorithms [8].

Wastewater treatment plants are subject to extreme 
dynamics throughout their life expectancy, and since they 
are designed with fixed performance demands and pol-
lutant loads, new approaches are required to characterize 
uncertainty through time [3]. In addition, these technologies 
allow the autonomy of the plant to be operated, reducing 
energy consumption, and improving competitiveness [9]. In 



61F.P. Larroca et al. / Desalination and Water Treatment 292 (2023) 60–68

the literature, there are reports on internet of things (IoT)-
based systems-together with mathematics, statistics, neural 
networks, and sensor integration-for technological interven-
tions to eliminate sudden (negative) controllable changes 
[10], which indicates this technology is still being developed.

The limitations associated with the use of ML are that 
these models are highly dependent on the selected data, 
which sometimes limits the accessibility where there is a lack 
of data management/storage capabilities necessary for the 
function of these models [11]. Some ML techniques are sub-
ject to poor reproducibility when developed using random 
weights that work only with characteristics similar to those 
of the dataset originally trained and tested [12].

Aggregation processes (coagulation/flocculation) are 
widely used in water treatment. In many cases, different 
methods may be used to monitor the aggregation process, 
especially when related to the dosage of additives used in 
the process. Hydrolyzing metal salts, such as aluminum and 
ferric salts, are used to promote the aggregate formation 
by neutralizing the of negatively charged colloids by cat-
ionic hydrolysis and the incorporation of pollutants into an 
amorphous solid precipitate [13]. Additionally, adsorption 
of ferric ions onto kaolin particles occurs by formation of 
surface complexes between positive charged ferric ions and 
hydroxyl groups on the surface of the mineral. As kaolinite 
turbidity is a problem faced by the clay processing industry, 
kaolinite has been extensively used to model the presence 
of turbidity in water [14–16]. Therefore, a kaolin and ferric 
chloride-based coagulation process is useful to test a process 
for removal of turbidity. Once aggregates (flocs) are formed, 
their characteristics such as size, density, and fractal dimen-
sion can be measured. Once the flocs have been filtered or 
sedimented, the efficacy of the process is assessed by mea-
suring the residual turbidity, which is the most widely 
used method [17].

Significant developments in advanced image analysis 
have allowed particle/floc analysis in real time and have 
offered an easy way to measure a variety of properties for 
these particles [18]. The application of ML technologies in 
coagulation/flocculation is based on two aspects: predict-
ing effluent turbidity and predicting the amount needed 
based on influent turbidity. However, its implementation 
is expensive due to the need for specialized software and 
equipment. Therefore, it is necessary to take advantage of 
the many benefits offered by ML technologies to cut costs 
without sacrificing the expected results.

This article reports on the implementation and use of a 
floc image acquisition and analysis system in a pilot water 

treatment plant to remove kaolin turbidity with a coagulant 
and a flocculant. During a first step, a factorial experiment 
design is used to test several coagulant and flocculant doses 
in continuous flow to obtain the Hausdorff dimension (df) of 
the images and to relate them to the turbidity post-treatment, 
thus identifying the value of the df and relating it with the 
lowest value of turbidity. As a second step, images are then 
used to create a database with pre-treatment turbidity values 
(Tin) and post-treatment turbidity values (Tout), flocculant (Sfl) 
and coagulant (Sco) doses. The Hausdorff dimension is then 
used to obtain information about the image texture to ensure 
that the flocs could be removed by the filtration system and 
using df values for corrections of the dosage of both chemi-
cal agents via signals with pulse width modulation (PWM) 
that feed and control dosage pumps during treatment, 
ensuring that df values stay within established limits.

2. Materials and methods

2.1. Kaolin suspensions

When injected into running water at a continuous flow, 
kaolin is used for obtaining a homogeneous mixture with 
constant turbidity, which is known as pre-treatment water. 
The kaolin grains (COMACSA, Lima, Peru) were ground for 
4 h and then sieved at 25 µm. A sample was characterised 
by X-ray diffraction (XRD) (Bruker D8 Advance, USA). The 
suspensions were prepared mixing 2.0 g of kaolin per liter 
of deionised water at a 6.5 pH level of 6.5 and maintained in 
constant agitation with a mixer (Lightnin L1U08F, USA).

2.2. Water treatment plant

The treatment plant (Fig. 1) is made up of a speed pump 
drive (Cole Parmer 75211-15, USA), which provides a 2 L/
min tap water flow (FNU < 5). This flow is injected with the 
kaolin suspension by means of a peristaltic pump (LeadFluid 
YZ15), obtaining a water mixture with a Tin = 60–110 FNU 
with an average input turbidity of 70 FNU. Treatment to 
remove turbidity includes the addition of a 24% ferric chlo-
ride coagulant followed by a vigorous mixture in a static 
mixer. Subsequently, 0.2% Magnafloc 394 (BASF) floccu-
lant is added followed by a 12 m-long 3.8 cm diameter PVC 
tube flocculator, with a Minitwist filtration system with a 
25-µm steel filtration element (Pelmar Engineering LTD, ON 
Canada) at its tip for capturing the flocs that have formed. 
The residence time in the water treatment plant was approx-
imately 2.5 min. Turbidity is continuously measured using 

 
Fig. 1. Diagram for the turbidity removal process and image acquisition system.
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two sensors (Turbimax CUS52D, Endress + Hauser) placed 
after the input of the kaolin suspension and at the 25 µm 
mesh filter output.

The plant has a SCADA (supervisory control and data 
acquisition) system [19], but it was only used for data acqui-
sition because the control is carried out by the proposed 
solution. The plant included two turbidity sensors connected 
to a transmitter (Endress + Hauser Liquiline CM448), a PLC 
(S7-1500 Siemens, Germany) that receives information from 
the transmitter, a Dell 6490 I5 Intel computer, 24 Gb RAM, 
64-bit Windows system 10 environment running MATLAB, 
and the IoT (2040 Siemens) that generates PWM signals to 
control the two coagulant and flocculant dosing pumps 
(LeadFluid 50 S and BT101S, respectively) in the plant.

A PWM is a signal consisting of square pulses of two 
values, zero and a maximum value per cycle. Each cycle has 
a constant period; however, the duration of zero and max-
imum can be varied to generate signals with different rms 
values to control the pump speed, hence the dosing of the 
chemical agents in the treatment plant. A low dosage corre-
sponds to a PWM signal with more duration of zero value 
than the maximum one every cycle, and vice versa.

2.3. Image capture and treatment

The flocs formed pass through the inner channel of a flow 
cell made by two Plexiglas plates lit posteriorly with white, 
diffuse led light (Philips DL252, The Netherlands). The pho-
tographic record of images begins when obtaining constant 
turbidity values at the treatment plant input (Tin). The images 
were taken every 20 s during 10 min with a Canon T3i camera 
with a Canon EFS 18–55 mm lens and generated in RAW for-
mat. The camera was controlled by the “Image Acquisition 
Tool” by MATLAB [20]. All photographs were taken 12 cm 
away from the anterior flow cell side to keep the same scale 
across images (Fig. 2).

The images registered by the camera were obtained in 
RAW format and processed to extract the region of interest 

(ROI), then converted to greyscale, filtered, and improved 
their contrast. The process has 16 stages, as shown in Fig. A1.

2.4. Experimental design

A preliminary value of the coagulant and flocculant 
dose was obtained using a jar test (ASTM D2035-08) using 
a Platypus Jar Tester device (Microfloc Pty Ltd., Australia) 
device, measuring turbidity before and after the treatment 
(Lovibond infrared turbidity meter TB210 IR).

The most effective combination of coagulant and floc-
culant obtained from the jar test was assigned a zero coded 
value from a completely randomised factorial design 23 
of two variables and three levels. Noncoded values were 
obtained by multiplying the concentration of coagulant and 
flocculant by the pump flow and dividing it according to 
the flow of treated water flow (Table A1).

The trials were carried out at the water treatment 
plant described in Section 2.2 – Water treatment plant. 
The flow process is shown in Fig. 3.

2.5. Hausdorff dimension (df)

The fractal dimension of the flocs allows it to be associ-
ated with turbidity removal. This fractal dimension may be 
defined by different approaches, of which the Hausdorff 
dimension (df) is the most common. In this way, once the 
image is treated, this dimension is calculated using the 
box count method [21] through Eq. (1) [22].
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where N(ε) represents the small boxes in the object with 
ε dimensions and ε sides [23]. This calculation is per-
formed with the Box-Counting tool [24] by MATLAB [25]. 
A process diagram for calculating the df from the images is 
shown in Fig. 4.

 
(a) (b) (c) 

Fig. 2. (a) Image acquisition system, (b) flow cell with flocs, and (c) floc-free cell.
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2.6. Evaluation of supervised models

Each trial lasts 10 min, in which 30 images are recorded 
(once every 20 s). Each image has its df calculated, which 
allows for creating a database containing 30 packs of 5 data 
each: input turbidity (Tin), output turbidity (Tout), Hausdorff 
dimension (df), flocculant (Sfl) and coagulant (Sco) dosage 
values. From this database, five supervised models were 
assessed: logistic regression (LR), linear discriminant anal-
ysis (LDA), K-nearest neighbours (KNN), Naive Bayes 
(NB) gaussian [26], and support vector machine (SVM). 
These models were chosen because an output (turbidity) is 
necessary for a supervised model.

These dose values predicted in each model are contrasted 
with the actual values measured in the trials. Then, the 
model that produces the best dosage prognosis is selected.

2.7. Dosing adjustment

The distribution of df that allows separation in the fil-
ter, and which is also associated with the lowest turbidity 
value, becomes the range of desired values. In this way, a df 
value outside the range modifies the dosage in such a way 
that the desired df range is reached.

In other words, when a desirable turbidity value is estab-
lished and the data acquisition by the sensors begins, there 
is a small delay with respect to the image acquisition system 
used to obtain the Hausdorff dimension. To achieve chem-
ical dosing, a difference is established between the input 
turbidity and the output turbidity, and the difference is 
interpreted as an error; since the image acquisition system 
obtained the image in advance – due to the delay in sen-
sor-mediated acquisition- and has processed the image data 
using the Naive Bayes algorithm for the required coagulant 
and flocculant dosage, the system based on the algorithm 
is ahead. When the sensor finds the new turbidity value, 
the image acquisition system will already have calculated 
the new Hausdorff dimension value together with the dos-
age prediction. Thus, the error continues to be calculated 
until the system reaches the desired value, at which point 
it will stop until a new adjustment is required due to the 
lack of flocculant and coagulant dosage.

Dosing adjustments are achieved through a PWM 
signal. Set in Firmata mode, the IoT 2040 turns into a periph-
eral that receives Sfl and Sco and, via the pyFirmata soft-
ware, generates the PWM pulses [27] that control dosage  
pumps.

3. Results

3.1. Kaolin compounds

The XRD spectrum of the kaolin suspension obtained 
as described in Section 2.1 – Kaolin suspensions is shown 
in Fig. 5 and shows a typical kaolin spectrum with peaks 
of kaolinite (K), illite (I) and β-quartz (Q).

3.2. Hausdorff dimension as a proxy for controlling turbidity

Fig. 6 shows the temporal results of two trials with 
a 2.5 mg/L flocculant dosage, 15 mg/L coagulant dos-
age (Trial #1, Table A1), 3.75 mg/L flocculant dosage, and 
23 mg/L coagulant dosage (Trial #8, Table A1).

As shown, in t = 0 all the input and output values 
coincide with an initial value of about 5 FNU correspond-
ing to the moment at which running water injection starts. 

 
Fig. 3. Flow process of the experimental design.

 

Fig. 4. Diagram of the image treatment process for calculating the Hausdorff dimension.

 
Fig. 5. Kaolin XRD spectrum. K: kaolinite; Q: β-quartz; I: illite.
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Immediately after, Tin gradually increased due to the injec-
tion of a mixture of water and kaolin. Tout remains almost 
unchanged until it abruptly increases as a result of the 
arrival of water with kaolin at the plant output.

Fig. 7 shows the inlet and outlet turbidity measure-
ments for each test. The highest turbidity removals (higher 
differences between inlet and outlet turbidities) were 
obtained during trials 1 (2.5 mg/L flocculant and 15 mg/L 
coagulant dose) and 2 (3.75 mg/L flocculant and 15 mg/L 
coagulant dosage). Although trials 1 and 2 produced the 
best removals, the Hausdorff dimension value of trial 2 is 
more appropriate to act as a control variable because its dis-
tribution has less overlapping with the rest of the values 
of each trial (Fig. 8).

3.3. Evaluation of supervised models

The mean accuracy values obtained with the selected 
models are 0.0705 for SVM, 0.2002 for LDA, 0.8254 for LR, 
0.9297 for KNN, and 0.9916 for Naive Bayes gaussian (NB). 
In Fig. 10 are shown additional results obtained from the 
assessment. Results are shown in Fig. 9.

As shown, the algorithm with the best accuracy to pre-
dict the dosages of flocculant and coagulant is NB.

 

(a) 

(b) 

Fig. 6. Values of turbidity of (a) trial 1 and (b) trial 8, as shown 
in Table 1.

 

Fig. 7. Box plot for inlet turbidity and outlet turbidity.

 
Fig. 8. Box plot of the calculated Hausdorff dimension for 
each trial.

 
Fig. 9. Box plot of the assessed models.
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3.4. Evaluation of f-score for the NB model

An assessment of the predominance between vari-
ables (f-score) that explains the prediction process for 
water treatment through the NB model delivered the water 
results shown in Table 1.

Here, the variable with the highest significance is df, 
with a 43.1% f-score, followed by Tout with 34.5%. Both 
contributed to 77.6% of the prediction.

3.5. Dosage pump control

Fig. 10 shows some results for the PWM control pump 
signal with low, medium, and high dosage [28] (Fig. 10a–c, 
respectively) as explained in Section 2.2 – Water treatment 
plant.

4. Discussion

The process used in this study starts with obtaining floc 
images during water treatment. Images have previously 
been reported to assess the efficacy of coagulation and 
flocculation processes [23,29–31]. The most common meth-
odology requires calculating the Hausdorff dimension to 
establish the characteristics of the obtained [32,33]. The asso-
ciation between df and turbidity post-treatment is used as a 
model to find the dosage of chemical products that are usu-
ally found during a jar test. The disadvantages of using the 
jar test to find better dosages are operator time consumption 
for the preparation and execution of the test, the use of dos-
ages restricted to certain values, and the fact that the water 
characteristics may vary a moment after the test was made. 
Finding the appropriate dosage for coagulant and flocculant 
establishing a relationship between output turbidity and the 
Hausdorff dimension for the flocs allows for a closer on-site 
process control and a continuous adjustment for changing 
water conditions, which offers very short response times 
and potential savings in the cost of the chemicals used 
to remove turbidity.

Of the five supervised algorithms assessed for dosage 
prediction, NB was clearly superior with an accuracy score 
of 0.9916 (Fig. 7), with df being the best predictor variable 
(f-score 43.1%) followed by turbidity after treatment (f-score 
34.5%). Both explain 77.6% of the variability observed in 
the treatment process and can be used to make predictions 
about the behavior of the turbidity and adjust the dosage of 
chemical products for treatment.

The df associated with the highest turbidity removal 
was 0.507–1.174, less than 1.225–1.525 previously reported 
[34], the fractal dimension reflects the degree of compac-
tion degree and the ease of sedimentation ease of flocs [35], 
where higher values usually describe flocs that are more 
likely to sediment. Although other studies report higher df 
values (1.659–1.809 [36], 2.45–2.44 [37]), the small values for 
the fractal dimension obtained by this study did not cause 
separation issues since we used a filtration system instead 
of a sedimentation tank.

In this study, the Hausdorff dimension was obtained 
from the image containing several flocs, such as the one 
shown in Fig. 2b. This procedure significantly reduces the 
computing time required to calculate the df for each floc in 

 

 

 

(a) 

(b) 

(c) 

Fig. 10. Some examples of pulse width modulation signals gen-
erated to control pump dosage as shown in the oscilloscope: 
(a) low dosage, (b) medium dosage, and (c) high dosage. pulse 
width modulation signals are comprised of two pulses, zero 
voltage and maximum voltage (shown as a discontinuous yel-
low line at the bottom and top of each graph, respectively); the 
combination of the two pulses controls the pump speed where a 
higher duration of zero value means lower dosing, and a higher 
duration of the maximum value means higher dosing.

Table 1
f-score for prediction using the Naive Bayes model

Variable Symbol Value Percentage (%)

Hausdorff dimension df 5,642 43.1
Turbidity post-treatment Tout 4,520 34.5
Turbidity pre-treatment Tin 2,394 18.4
Flocculant dosage Sfl 303 2.4
Coagulant dosage Sco 227 1.7
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each image. In the latter procedure, turbidity reduction con-
trol is likely more efficient, but it will require more comput-
ing power, leading to a more expensive control system.

The results show that it is possible to stop using turbid-
ity sensors and replace them with a photographic cham-
ber while working within the described turbidity range 
(60–110 FNU), which allows reducing the implementation 
costs for the control system. However, the utility of the sys-
tem is limited to process with active floc removal, such as 
filtration. In this work, the turbidity removal process works 
straightforward because the floc removal is being done by 
filtration, and the effluent turbidimeter measurements are 
taken in real time, facilitating a rapid response to changes 
in the quality of the effluent. When floc removal is carried 
out by sedimentation, the information based on the effluent 
turbidimeter is delayed due to the large lag characteristics of 
the flocculation process, therefore, a prediction model will 
be more efficient [38].

An automated system for turbidity monitoring requires 
at least two turbidity probes, a transmitter, and a PLC with 
proprietary software. The proposed system could run on 
a small computer like a Jetson nano or a Raspberry Pi IV 
for image acquisition and processing, a simple HD camera 
that replaces the turbidity probes, a Siemens 2040 IoT, and 
open-source software.

5. Conclusions

A turbidity monitoring and control system based on 
the Hausdorff dimension has been developed using con-
ventional imaging equipment. Chemical dosing that pro-
duces floc images with Hausdorff dimension values rang-
ing between 0.507–1.174 was associated with high levels of 
turbidity removal. The range 0.507–1.174 range is different 
enough from other ranges to be used to control the water 
treatment process. The proposed solution could be replicated 
with simple and cost-effective equipment with an estimated 
cost around one-magnitude order below the conventional 
approach.
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Appendix

Table A1
Dosage values used in trials

Trial 
number

Dosage

Coded values Non coded values

Coagulant Flocculant Coagulant 
(Fe+3, mg/L)

Flocculant 
(mg/L)

1 –1 –1 15 2.50
2 –1 0 15 3.75
3 –1 +1 15 5.00
4 0 –1 19 2.50
5 0 0 19 3.75
6 0 +1 19 5.00
7 +1 –1 23 2.50
8 +1 0 23 3.75
9 +1 +1 23 5.00

 
Fig. A1. Image treatment process.


