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ABSTRACT

This review presents the recent progress in the application of layered double hydroxides (LDHs)
as adsorptive agents for the removal of different pollutants. Co-precipitation, hydrothermal, and
sol-gel are the dominant methods used for the synthesis of LDHs. The characterization parame-
ters of the material are reviewed in detail, as it is found that they have unique morphological and
structural parameters, making them effective adsorbents across a wide range of environmental
conditions. However, these adsorbents are subjected to different modification processes to enhance
their adsorptive performance. From the literature, the maximum adsorption capacity of LDHs for
heavy metals and organic pollutants was found to be 800 mg/g for Cr(VI) and 9,127 mg/g for Congo
red dye. From the kinetic investigations, studies showed that the adsorption process using LDHs
mostly follows a pseudo-second-order model. In addition, the Langmuir model is the best model
to describe the isothermal data. The variation in the adsorption capacity of LDHs concerning envi-
ronmental conditions is summarized, and the best conditions are evaluated. From the information
presented in this review, it can be said that LDHs have a promising future as alternative materials
to many currently used adsorbents. However, the process of improving their surfaces and struc-
tural properties to suit the environmental conditions and to facilitate the process of separating
them from solutions remains a subject in need of study. In addition, a few studies have examined
the ability of LDHs to remove radioactive elements.

Keywords: Adsorption; Layered double hydroxides; Characterization; Synthesis method; Heavy
metals; Organic pollutants

1. Introduction

Overall, in recent decades, the increasing levels of pol-
lution in the aquatic environment have become a matter of
concern for many countries [1-3]. Drinking water resources
are polluted by many elements, whereby heavy metals, dyes,
and emerging contaminants (ECs) are among the most dan-
gerous as they directly affect human health. Industrial activ-
ities top the list of the releasers of these pollutants into water
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sources as they pump wastewater, after inefficient treatment,
into the environment [2,4-8]. Heavy metals are highly toxic
elements that are also non-biodegradable. They bio-accu-
mulate in living things and hence can cause serious damage
to human health and the quality of the environment [1,7].
Following the standards of the World Health Organization,
the allowable limit of many heavy metals, such as cop-
per (Cu), cadmium (Cd), chromium (Cr), lead (Pb), arsenic
(As), mercury (Hg), nickel (Ni), and zinc (Zn), is less than
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0.1 mg/L [9]. On the other hand, dyes are carcinogenic
and highly toxic agents, and thus, they pose a huge threat
to global public health and life safety, even at low concen-
trations. In addition, the dyes present in water bodies can
restrict the photosynthesis process because of the ability
of the dye molecules to absorb reflected sunlight, thereby
damaging aquatic life. Numerous anthropogenic organic
compounds are included in ECs, such as pharmaceuticals,
pesticides, personal care products, and synthetic hormones,
with many being associated with having harmful effects
on both the environment and human health due to their
high toxicity, persistence, and degradation-resistant prop-
erties [10-12]. Therefore, the removal of toxic heavy met-
als, dyes, and ECs from water solutions has been a primary
concern of many researchers and environmental scientists.
On this front, many studies have demonstrated that
adsorption, membrane separation, advanced oxidation,
photocatalytic degradation, and reverse osmosis are suc-
cessful processes in terms of the removal of numerous inor-
ganic and organic pollutants from water solutions [13-16].
The adsorption process has been intensively studied for
decades because of its ability to overcome all the drawbacks
of conventional treatment techniques due to its simplicity,
affordability, the possibility to reuse the adsorbents, and
no sludge production [13,17]. In the adsorption process, the
capacity of the used adsorbents is the key factor in the fast
and efficient adsorption of target pollutants. Adsorbents
fall into three main classes: organic absorbents, inorganic
absorbents, and biological absorbents. Organic absorbents
are mainly managed by unpaired electrons and the heavy
metal ions in oxygen, sulfur, nitrogen, and other atoms of
the included functional groups. Inorganic absorbents lay-
ered double hydroxides (LDHs, activated carbon, zeolite,
graphene, mesoporous silica, etc.) have large specific surface
areas and controllable pore structures. The advantages of
bio-absorbents are their high adsorption capacity and renew-
able nature [18]. Due to its great adsorptive properties, such
as a large specific surface area, high porosity, and hydropho-
bicity, activated carbon is the most efficient adsorbent for
different inorganic and organic pollutants [19]. However,
the high cost of activated carbon is a stumbling block that
stands in the way of its widespread use. Accordingly,
many alternative materials have been proposed, which are
characterized by their affordable price and high practical
performance. In this regard, many studies have provided
excellent adsorbents, both in theory and in practice; one of
the most superior ones is layered double hydroxide (LDH).
LDH materials are gathering a lot of interest for many
applications. Their use as adsorbents in water treatment
has garnered great attention due to their large surface area,
highly tunable interior, architecture [8,20], exchangeable
anionic features [8], and non-toxicity [21]. Therefore, LDHs
provide the possibility of a high adsorption capacity [2].
In recent years, LDHs have been used as sorbent materi-
als for a wide range of hazardous and toxic contaminants
in aqueous environments. Previous studies have shown
LDHs to be effective adsorbents for the removal of heavy
metals [22-26], organic pollutants such as dyes [15,27,28],
and ECs [29-31]. The versatility in the LDH structures and
composition makes them promising adsorbents for remov-
ing a variety of toxic contaminants from water solutions

[8,32,33]. Nanostructured LDHs can be utilized to remove
contaminants from wastewater, mainly by adsorption and
an ion-exchange mechanism [8].

LDH, also known as hydrotalcite-like compounds, belong
to a versatile class of bi-dimensional (2D) anionic lamel-
lar nanostructured materials. A hydrotalcite is composed
of individual layers of a brucite-like structure [Mg(OH),]
[34]. A positively charged layer is formed by a stack of bru-
cite-like layers [Mg(OH),] with a positive residual charge
due to partial Mg?* substitution by AI** cations [34,35]. Layers
in brucite are electrically neutral, with a magnesium cation
situated at the center of an octahedron, with six hydroxyl
groups located in the vertices [36]. The chemical composition
of LDH is generally represented as shown in Eq. (1).

LDH chemical formula =[ M;", -M;** (OH), |
[(A”’ ). mHon 1)

where M™ and M"" represent the di- and trivalent layer
cations, respectively, in octahedral positions within the
hydroxide layers; A™ is an anion, and the charge densi-
ties of the LDH layers are NO,7, CI, CO,* [36,37]; m is the
number of water molecules occupying the interlamellar
layer sites, where no anions are present [36]. Additionally,
the pure hydrotalcite phase can be obtained when x lies
between 0.2 and 0.33, where x is a ratio of M™/(M*™ + M**)
[36,38,39], resulting in the M™/M**ratios of 2:1 to 4:1 being
reasonably stable. Thus, different LDH compounds can be
obtained by varying the cations, their ratio, and the interla-
mellar anions [40]. The structural characterization of LDH
is shown in Fig. 1.

In the LDHs, the di- and trivalent cations are linked by
OH units coordinated at the octahedral position, forming
sheets that are then stacked on top of each other to give a
layered structure, analogous to that of the mineral brucite
[42]. Approximately half to one-quarter of the divalent cat-
ions are substituted by trivalent metal cations, resulting in
metal hydroxide layers of positively charged, mixed [M*
M+ (OH),**, which then stabilize with negatively Charged
1nterlayers containing anions and water molecules [(A™)
o mMHOI™ [43-45]. The lack of cross-linking between the
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Fig. 1. Schematic of the layered double hydroxides structure [41]
(Copyright 2023 Royal Society of Chemistry, Open Access).
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cation layers is a significant property of LDHs, allowing the
interlayer spacing to shrink or expand to accommodate a
broad range of interlayer anions [40,42,46].

There are many sets of di- and trivalent cations for the
synthesis of LDHs. Commonly used divalent M** cations are
Mg", Zn™, Mn", Ni"*, Co", and Fe", whereas the trivalent
M*™ cations include Al*, Cr*, Fe*, and Mn*** [36,38,47].
Table 1 lists the combination styles of di- and trivalent
cations in LDH used for the adsorption of various toxic
contaminants [18].

The LDHs represent one of the most technologi-
cally promising nanostructured materials in recent years,
due to their relative ease of preparation and broad use as
adsorbents [44], high surface area, low cost, highly tun-
able interior architecture [8,20], non-toxicity [8,21] and
exchangeable anionic features [8]; these properties result in
excellent adsorption properties as well as high mechanical
and chemical stability [47].

Another advantage of using LDHs as adsorbents is the
simple technique of modification and intercalation, which

Table 1
Combination of di- and trivalent cations in the layered double
hydroxides structure

Ca™ Mg™ Fe* Zn™ Ni" Cu™ Mn" Co”
N N N
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enhances their removal efficiency. The temperature is raised
to 400°C-600°C during calcination, resulting in a calcined
clay with a larger surface area, greater thermal and chemi-
cal stability, and a greater number of active sites. Calcination
substantially enhances the adsorption capability of these
hydrotalcite-like materials [48,49]. The nanocomposites
generated by the hybridization of LDHs, with other nano-
materials, demonstrate a considerable increase in surface
characteristics and adsorption ability [48].

LDH materials provide a new line of investigation into
the outstanding adsorption tendency of different toxic con-
taminants onto the LDHs from water bodies [8].

This literature review focuses on presenting the stud-
ies that investigated the characteristics of LDHs and their
adsorption capacity in removing different materials from
aqueous solutions. In addition, the variation in the LDH
adsorption capacity as a function of different operating
parameters, such as contact time, pH, adsorbent dosage, ini-
tial contaminant concentration, temperature, and coexisting
and competitive anions, is discussed in detail.

2. Unique adsorptive characteristics of LDHs
2.1. Crystal structure and morphological properties

Adsorbent characteristics are important in determining
the adsorption capacity of materials, as well as the mecha-
nisms used to remove contaminants from aqueous media
[50,51]. Fig. 2a shows the structural properties of LDH, indi-
cating a normally well-crystallized form. Fig. 2b presents
the X-ray diffraction (XRD) pattern of LDH, displaying two
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Fig. 2. (a) Field-emission scanning electron microscopy of MgAIl-LDHs, (b) X-ray diffraction of MgAl-LDHs, (c) Fourier-transform
infrared spectroscopy of MgAI-LDHs [52], (d) N, sorption/desorption isotherms of MgAI-LDH [55] (Copyright 2023 Elsevier).
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characteristic peaks at 20 =23.2° and 11.6°, which correspond
to the interlayer spacing and LDH basal spacing, respec-
tively. The interlayer spacing (d,,) and basal spacing (d
are generally determined by Bragg’s law [52].

003)

2.2. Functional groups

Fig. 2c presents the main functional groups in the
hydrotalcite-like material. The LDH materials show poor
functionality, with some defined apices. First, the overlap
of several forms of O-H bonding vibrations is attributed
to an extremely broad apex, around 3,500 cm™, such as the
interlayer water molecules, the hydroxyl group in the bru-
cite-like layers, and even physically adsorbed water [50].
Second, a well-defined apex at nearly 1,650 cm™ most likely
corresponds to the N=O and/or C=0 functional groups, built
from the internal anion [(CO,*) and/or (NO,)]. The N=O
and/or C=0 stretching vibrations of the interlayer anion are
also observed to be close to 1,380 cm™. Through an anion-
exchange mechanism, those exchangeable anions in the
interlayer matrix can help in the removal of the toxic
oxy-anion from the aqueous solution. Finally, the lat-
tice modes of (O-M-O) vibration are characterized by an
observed apex at roughly 680 cm™ [52].

2.3. Zeta potential

The LDH’s material is comprised of brucite (Mg(OH),)-
like layers, with positively charged sheets that result from
the plentiful protonated hydroxyl groups —OH," on the
external surface of this material. This indicates that LDH
has a positive zeta potential in a wide range of pH solu-
tions. Protonation and deprotonation of the surface func-
tional groups characterize LDHs, like other adsorbents. As
the LDH’s zeta potential usually indicates a highly charged
positive value, the pH of such a material’s isoelectric point
(pH,,,) is frequently greater than 9. This includes, for
instance, MgAl/LDHs (synthesized by the sol/gel method);
MgAI/LDHs (alkoxide-free sol/gel method); and MgAl/
LDHs (hydrothermal precipitation method) [51,53]. A high
IEP value of MgAl/LDH is most likely due to the dissocia-
tion of mainly Mg(OH), and some Al(OH)," sites [54].

2.4. Anion-exchange capacity

Layered double hydroxide materials typically present
an excellent anion-exchange capacity (AEC) value because
they have more exchangeable anions in their matrix. As
a result, they can function as inorganic anion-exchangers
with a high affinity for diverse anionic pollutants in the
solution. The values of the AEC of the MgAl/LDH sam-
ple increase in the following manner: 300 m /100 g for the
alkoxide sol/gel. <400 m, /100 g for the hydrothermal pre-
cipitation, and <450 m_/100 g for the alkoxide-free sol/gel
[53]. Similarly, a high value of ACE of MgAl-hydrous oxides
(420-550 meq/100 g) was verified [54].

2.5. Textural properties

Fig. 2d depicts the nitrogen (N,) sorption-desorption
isotherm of LDH. The isotherm is classified as IV-type

category by IUPAC, with a noticeable H,-type hysteresis loop
at a high relative pressure [(P/P ) > 0.8]. The study revealed
that LDH has mesopores with slit-shaped pores, which are
formed by layering the nanosheet building blocks [53,55].
Generally, LDH adsorbents are classified as porous mate-
rials, meaning that LDHs often exhibit a high Brunauer—
Emmett-Teller (BET) specific surface area (S,.;) and total
pore volume [53,55]. In addition, the M*/M?* molar ratio of
the metal salts used in the LDH synthesis, calcination pro-
cess, and preparation method all affect the LDH texture.
The S, and V, values of LDH were hereby found to be
lower with increasing molar ratios of metal salts used, as
reported by Bravo-suarez et al. [43]. This result is consistent
with those of some authors [56,57], but not with those of
Clark et al. [58].

In regards to the calcination process, the S, . of LDH is
typically improved during calcination under atmospheric
air [59]. For instance, the S . and V,  values of SO -Mg/
Al-LDH (95 m%*g and 0.28 cm’/g) were found to signifi-
cantly increase after calcination at 350°C (142 m?%*g and
0.42 cm®/g), as reported by Ramirez-Llamas et al. [60].

3. Synthesis of LDHs and their composites and
modification of LDHs

LDHs are green nanomaterials because they are eco-
friendly, non-toxic, do not exhaust natural resources, and
the solvent used in their synthesis is water [61]. Although
LDH is considered a rare mineral in nature, it can be syn-
thesized in the lab using chemicals that are much less
expensive [62]. Selection of the preparation method greatly
depends on the cations in the hydroxide layer, the inter-
calated metal anions [36], the concentration of the inter-
acting metal ions [62], and the desired physio-chemical
properties, such as crystallinity, phase purity, morphology,
porosity, and optical and electronic characteristics of the
final material [36]. The ability to control the preparation
process is mostly governed by parameters such as system
pH, stirring speed, reaction time, titration rate, tempera-
ture [63], and the atmospheric pressure [62]. Preparation of
the LDH can be accomplished by using various methods,
which are categorized into two types: direct and indirect
methods [8]. The most conventional direct methods utilized
for the preparation of LDH are co-precipitation, hydrother-
mal, sol-gel, and in-situ growth film. The most common
indirect methods for LDH synthesis are anion-exchange,
delamination followed by restacking, and memory effect
reconstruction [36]. First, the most conventional methods
used for pristine LDH synthesis are discussed, followed
by the most prevalent techniques for the preparation of
LDH composites. The third subsection contains a variety
of LDH composites that have been synthesized via specific
methods. Table S1 displays the outcomes. These results are
also presented in the text, where the table is divided into
three subdivisions (heavy metal, dyes, and ECs). The first
column of this division contains the LDH/composite, and
the contaminant name(s) are listed in the second column.
Also included in this table are the methods of synthesis
and experimental details, such as the chemicals used, the
steps and/or conditions of the experiment, the pH of the
reaction mixtures, and the conditions of calcination.
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3.1. Direct methods
3.1.1. Co-precipitation method

Co-precipitation, also called the salt-based method, is
the most conventional preparative method for LDH prepa-
ration and is mainly used due to its simplicity, the flexibil-
ity of conditions (constant or variable pH), and large-scale
production capability, and because it can be conducted in a
single reactor [19,47]. It is further subdivided into the pre-
cipitation of low super-saturation and the precipitation of
high super-saturation [46,64]. Ideally, the pH adjustment
approach should differ between the two methods [40,46,65].

Depending on the precipitation conditions, a well-crys-
tallized hydrotalcite or amorphous material can be obtained.
These conditions are as follows: The M?*/M?¥* molar ratios,
pH of the reaction media, base solution concentration, base
solution nature, aging temperature, aging time, and total
cation concentration [40].

“LDH co-precipitation” refers to the simultaneous pre-
cipitation of M(OH), and M(OH), where metal salts are
used as precursors [40,46,64], and it is based on the mixing
of metal salt solutions in a proper proportion in a reactor
containing deionized water [19,46]. Metal salts are mostly
composed of nitrates, sulfates, chlorides, and other soluble
salts [66]. An alkaline solution is also added and vigorously
mixed to elevate the pH value, resulting in the co-precipita-
tion of an LDH having two metallic salts [19]. The alkaline
solutions include NaOH, KOH, NH,, Na,CO,, K,CO,, urea,
and other alkaline solutions [66]. To obtain a well-crystal-
lized and reproducible LDH structure, the produced mix-
ture has to age for a long period in the synthesis solution.
The pH is maintained at a slightly above-the-required value
for both metal salts to precipitate simultaneously [19,46,67].
On the other hand, higher pH levels may lead to the inclu-
sion of some hydroxide as a counter ion on the LDH surface,
or even within the interlayer. By filtration, the precipi-
tates are separated, and then washed well using deionized
water; the LDH is then dried overnight in an oven [67].

The most disadvantageous phenomenon that occurs
during the preparation of LDH is carbonate, CO,>, inter-
calation between the layers. This occurs as a result of the
absorption of CO, from the atmosphere, which dissolves in
the solution, especially at basic pH conditions. The carbon-
ate CO,> ion is among the most firmly held anions within
the lattice of LDH, and to prevent its inclusion, the reactions
should take place in an atmosphere free of CO, or under
inert gaseous conditions, such as N,. A carbonate CO,* ion
is strongly bound in the interlayer. Thus, it is difficult to
replace them with adsorbate ions during ion-exchange. This
means the LDH adsorption efficiency will be better only
when the interlayer ion is weakly bonded [19,67].

The interlamellar anions can be selectively interca-
lated depending on the experimental conditions. Such key
conditions are the pH of the reaction medium, the reactor
temperature, the concentration of the alkaline solution, the
concentration of the metallic salt solutions, the aging of the
precipitate, and the low rate of the reactant [68]. When this
LDH is calcined, it first loses the interlayer water, up to
200°C, then decomposes and dehydroxylates all the carbon-
ate into CO, at around 450°C-500°C. Finally, metal oxides
with a high specific area and a narrow pore-size distribution

are produced [69]. In some situations of LDH calcination,
the dehydroxylation or water loss causes a collapse of
the LDH structure, and quasi-amorphous mixed oxides
are produced [19,70,71].

Despite the advantages that co-precipitation presents,
such as the capability to intercalate various anionic species,
high yield, crystallinity, as well as LDHs of the utmost purity,
it faces several challenges, such as changes in the opera-
tional conditions of the process from the beginning to the
end that produce differences in crystallinity. Furthermore,
super-saturation is usually low, except in the alkali introduc-
tion point region, and this does not assist the fashioning of
uniform nanometer-sized particles [46]. Another co-precip-
itation shortfall is that the particles agglomerate, forming
aggregates with an extremely large-sized distribution. This
is attributed to the strong interactions among the edge sur-
face platelets, called “sand rose morphology” (Fig. 3), caused
by the high-base super-saturation conditions imposed
by the co-precipitation conditions [72].

The co-precipitation mechanism is based on the conden-
sation of the hexa-aquo complexes in the solution, which
results in the formation of brucite-like layers with a uni-
form distribution of both the solvated interlamellar anion
and the metallic cation. Precipitation at low super-satura-
tion and precipitation at high super-saturation are the two
techniques of co-precipitation [64].

e Precipitation at high super-saturation includes add-
ing mixed metal cations, in the proper ratio, to an alka-
line solution containing choice interlayer anions. The
addition of metal salts causes a pH change, leading to
the formation of M(OH), and M(OH), impurities and
undesired metal ratios. Precipitation at a high super-sat-
uration condition leads to the formation of fewer crys-
talline materials [46,64].

e Precipitation at low super-saturation is the most com-
monly used co-precipitation method. It proceeds by add-
ing a solution of metal ions slowly, in the desired ratios,
to a vessel containing a solvated solution of anions. The
pH at which the metal salts precipitate is monitored
and adjusted by the simultaneous addition of basic

| 2 pm 1

Fig. 3. Scanning electron microscopy image of MgAI co-
precipitation agglomeration [72] (Copyright 2023 Elsevier).
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solutions. In comparison to the material formed by pre-
cipitation under high super-saturation conditions, the
material formed under low super-saturation conditions
has a high crystallinity [46,64].

3.1.2. In-situ hydrothermal method

The hydrothermal treatment is also known as “urea
hydrolysis” [73] because it uses urea instead of NaOH as
a precipitation agent. Urea is a very weak Bronsted base,
with a pK| of 13.8, and a hydrolysis rate that may be read-
ily controlled by adjusting the reaction temperature, which
produces a slow rate of urea hydrolysis and leads to the low
super-saturation of LDHs during precipitation. It is highly
soluble in water and its controlled urea hydrolysis pro-
duces ammonium cyanate or its ionic form, while prolonged
urea hydrolysis can yield CO,* in a basic environment or
CO, in an acidic medium. During the reaction, a tempera-
ture greater than 60°C causes it to proceed into a slow
decomposition of urea in ammonium hydroxide (NH,OH),
resulting in a homogeneous precipitate that undergoes the
following reactions [Eqs. (2)—(4)] [74]:

NH, -CO-H,N - NH,, + NCO" 2)
NCO™ +2H,0 - NH,, + CO;} ®)
NCO™ +H* +2H,0 - NH,, + HCO, 4)

Traditionally, urea and precursor salts (chlorides,

nitrates, hydroxides, or sulfates) are mixed in certain ratios
and placed in a Teflon-lined stainless-steel autoclave. This
mixture is then heated to an appropriate temperature for a
set period of time. Filtration is used to get the precipitated
product, followed by thorough washing and overnight dry-
ing. The particle size and morphology can be controlled,
and there are no competing anions in this method [19].

Lei et al. [75] prepared a triple-metal, MgNiAl-LDH,
utilizing MgSO,, AI(NO,),, NiSO,, and urea, in a molar
ratio of (1:1:1:6). After stirring for 1 h, the solution was
put in a 100 mL stainless steel autoclave with a Teflon lin-
ing and kept at 160°C for 6 h, before being cooled to room
temperature. Centrifugation was used to separate the pro-
duce. Deionized water and ethanol were used to wash it five
times, and then it was dried for 12 h at 80°C.

3.1.3. Sol-gel method

The term “sol-gel” is derived from a reaction’s physical
characteristics. Metallic-alkoxides are commonly employed
in this process as metallic precursors, but sometimes acetyl-
acetonates or acetates are used, and many inorganic salts can
also be employed as metallic precursors. The alkoxides are
dissolved in an organic solvent (e.g., ethanol, acetone) and
then refluxed. Water is slowly added to this refluxed solu-
tion. Thus, initially, hydrolysis forms a sol, then a metallic
precursor partially condenses, leading to the production
of a colloidal gel as a result of internal cross-linking. The
solid LDH properties are based on the rates of hydrolysis
and condensation of the metallic precursors, which can be

tuned by adjusting the reaction parameters, such as pH, the
type of solvent used, the nature and concentration of the
metallic precursor, and the temperature at synthesis. The
resulting LDH features are a well-customized pore size, a
large surface area, and high purity, and the material exhib-
its relatively good control of the stoichiometry [19,67,76,77].
MgAI-LDH, the most common of the LDHs synthesized by
this method, has been formed with Mg/Al ratios of nearly
6, compared to the more common ratios of 2 and 3 for mate-
rials obtained through other methods of preparation [67].

Ahmed et al. [68] synthesized MgFe-LDH using the
sol—gel method, dissolving a specific ratio of Mg(NQO,), and
Fe(NO,), in distilled water with continuous stirring for 1 h.
Just above the critical concentration of the micelle, a bro-
mide of cetyltrimethylammonium was added, and addi-
tional stirring was performed. The brown precipitate that
formed was the result of adding NaOH drop by drop with
stirring for an additional 2 h. The gel particles were filtered,
and then washed and dried at 100°C for 24 h.

3.2. Indirect methods
3.2.1. Anion-exchange synthesis

The anion-exchange approach involves adding a con-
centrated solution of anions of interest to a pre-formed LDH
structure. The resulting solution is kept at 50°C-70°C for
several hours with constant stirring. The efficiency of the
exchange varies based on the capability of the exchanged
anions to stabilize the lamellae and/or their proportion rela-
tive to the LDH precursor anions [76].

Anion-exchange is a very effective method, commonly
employed when co-precipitation is not applicable, for
example, when the metal ions are unstable at a higher pH
value or a potential for interaction exists between the metal
anions and the guest ions [46,62]. In such cases, the anion in
the interlayer area can be directly or indirectly substituted
with the desired anion [46]. A direct ion-exchange includes
the incorporation of carboxylic acid into LDH-A by direct
contact with a suitably concentrated aqueous or non-aque-
ous solution of the desired acid salt, where A = chloride
(CI") or nitrate (NO;") is used as an interlayer anion [46,78]
and indirect methods are needed to expel the divalent
anions (e.g., CO,>) as they are held strongly [46]. These two
methods are illustrated in Eqs. (5) and (6) [62,64].

LDH-A" +xB" —LDH-(B") AT ()

X

LDH-A" +xB" +mH’ >LDH-(B") +A™ +HA (6)
Some factors that must be considered when performing
anion-exchange are:

e The pH value: a low pH value is favorable for basic
anion de-intercalation and re-intercalation by less basic
ones. However, if the pH falls below 4.0, the LDH matrix
may dissolve.

¢ The incoming anion affinity: exchangeability is favored
when the incoming anions have greater charges than
the anions that are leaving, as well as when they
have a smaller ionic radius. The order decreases for
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divalent anions as follows: CO,> > HPO,> > SO,*; and
for monovalent ions it is: OH™ > F->Cl">Br- > NO, > I~

* The exchange medium: The inorganic solvent favors
the inorganic anion, even as the organic solvent favors
the organic anion.

e Chemical composition of the layer: The charge den-
sity of an anion is influenced by the chemical composi-
tion of the layer, which affects how the anion interacts
with the matrix [46,62,64].

3.2.2. Calcination-reconstruction “memory effect”

One unique property of anionic clays is that after thermal
decomposition they have the ability to retrieve the layered
structure [46]. The LDH is heated to around 400°C-600°C
in an inert atmosphere, which leads to the loss of inter-
layer water and carbonate, as a result of which mixed metal
oxides are formed known as calcined layered double
hydroxides, represented by (LDO) and/or (CLDH) [19].

For example, LDHs are intercalated with carbonate
anions by urea hydrolysis. Similarly, the lack of a fully
inert atmosphere during co-precipitation synthesis results
in unwanted anions, particularly carbonates, which are
strongly held by their matrix. To remove these unwanted
anions, powdered LDH is calcined and then reconstructed
with any anion that is needed. This is referred to as “the
memory effect” [64,79]. Thermal- and chemical-stable cal-
cined clays with a higher surface area and more active sites
are the result of calcination. It is recommended that heating
be done at a constant rate of 1°C/min to retain crystallin-
ity. This prevents the rapid release of CO, and water, thus
protecting the LDH’s original structure [19]. Calcination of
LDH forms the spinel phase, M*M,*O,, as the major prod-
uct [46]. Reconstruction of the layered structures is done by
using a solution of the required anion under a fully inert
environment to avert competitive intercalation by the car-
bonate ions. The calcination temperature has a direct impact
on the reconstruction process; for example, to achieve com-
plete reconstruction, it takes 1 d for a sample calcined at
around 400°C—-450°C and 3 d for a sample calcined at 750°C,
while at 1,000°C, only a fractional reconstruction is recog-
nized [80]. The typical layered structure can be recovered,
as shown in Fig. 4.

With these tunable features, it is possible to interca-
late numerous anions with varying molecular sizes and
active sites [64]. Starukh et al. [81] used a co-precipita-
tion method to prepare ZnAl-CO,-LDH and heated it to

450°C for 2 h. Regeneration was done by making a sodium
dodecyl sulfate (SDS) solution in CO-free deionized water
and then mixing it with calcined LDH. The suspension was
stirred at room temperature for 24 h to build ZnAl-LDHs.

3.2.3. Ageing process

Ageing is the hydrothermal or thermal treatment of
LDHs that is typically performed after the nucleation pro-
cess. Ageing improves the crystallinity of the prepared
materials, especially for those prepared using conventional
methods. In the thermal treatment, the sample is heated to
70°C-120°C for a long period, 1 h or 1 d, under atmospheric
pressure [46,64]. A bath of oil is sufficient. On the other hand,
hydrothermal treatment involves heating the samples in
enclosed reactor containers, in the presence of water vapor,
provided the temperature of decomposition is not overrid-
den. There are two possible experiments available. The first
is in a stainless-steel reactor at an autogenous pressure and
high temperature, which is referred to as autoclaving, while
the second involves using a silver or gold tube at 1,500 bar
and a high temperature. There are two possible experiments
available. As reported by Roy et al. [79], Ni/Al-CO,/LDH
and Ni/Cr-X/LDH (with X: CI;, CO,>, SO,*) were synthe-
sized and thermally treated at 10°C and 18°C for 10 d and
18 h, respectively, at a pressure of 1,500 bar. The hydrother-
mally treated samples showed improved crystallization at
180°C for 72 h, as seen in Fig. 5 [61].

To obtain an axiomatic comparison, one can refer to
Table 2, which is a summary of the pros and cons of vari-
ous methods of preparing LDH. If all the synthesis meth-
ods used are compared, co-precipitation can be considered
the most favorable because it produces products with good
crystallinity and relatively high corrosion resistance.

3.3. Methods of LDH-composite synthesis

An LDH has the capability of intercalating neutral mol-
ecules or exchanging organic or inorganic ions with their
authentic interlayer anions, where LDHs behave as a host
material for the formation of an organic-inorganic host-guest
composite, which will incorporate or increase the desired
chemical and physical properties. The flexibility and ver-
satility of LDHs and the availability of a large number of
“guests” permits the preparation of a wide variety of inno-
vative materials [19,46]. This section will discuss the com-
monly utilized techniques for preparing LDH composites.

reconstruction
using memory
effect

—

Fig. 4. Schematic illustration of recovering the layered structure of layered double hydroxides via the reconstruction process [80]

(Copyright 2023 Elsevier).



FA. Alnasrawi et al. / Desalination and Water Treatment 297 (2023) 2674 33

3.3.1. Co-perception method

This is a process that is more frequently used, not only
for the preparation of pristine LDH but also for the prepa-
ration of their composites. Metal salts are chosen such that
their anions have less affinity for LDH, or else the anions
that will be incorporated with the hydroxide layer will
face more competition. Chloride and nitrate salts are the
most commonly used anionic precursors. Furthermore, to
accurately control charge density, the pH is kept at a con-
stant value, where M*" and M*" can both precipitate at the
same time [19].

3.3.2. Anion-exchange method

The anion-exchange method is another approach that is
commonly used in the preparation of LDH composites. First,
the LDHs are synthesized using one of the most common
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Fig. 5. X-ray diffraction image of urea-synthesized hydro-
talcite demonstrating enhanced crystallinity with time [61]
(Copyright 2023 Elsevier).

Table 2
Comparison of different preparation methods

methods. The LDH precursors are then mixed in a solution
of excess anions and stirred to be intercalated. To avert car-
bonate (CO,*) intercalation, the whole process is performed
in a completely inert environment of N, or Ar. The electro-
static forces between the exchanging anions and positively
charged LDH layers enforce the exchange of the host and
guest anions [19,46]. This process is operated at higher
temperatures and a pH value > 4.0 to avoid the possibility
of a hydroxyl layer breaking.

3.4. Some specific synthetic LDH composites

Due to their highly tunable interior architecture and
high surface area, LDHs are considered efficient adsorbents
for contaminants in the liquid phase. Researchers are still
investigating synergistic approaches between LDH and
other materials in order to develop new composites with
improved characteristics. The aim of the process could be
to increase the pore dimensions and surface area, expand
interlayer spacing, intercalate functional groups to increase
the adsorption rate, or merely overcome the limitations
faced, such as column clogging due to a small crystal size
or costly regeneration process. Efforts have been made by
synthesizing composites with a wide range of materials, like
magnetic materials, biochar, carbon, surfactants, nanostruc-
tures, and so on. This section summarizes the procedures
adopted by various groups to prepare a wide variety of
novel composites with diverse properties, utilizing several
innovative materials.

3.4.1. Template-assisted synthesis

LDHs prepared by classical hydrothermal or co-pre-
cipitation methods can be joined with surfactants or tem-
plates to obtain a flower-like morphology by using hard
or soft templates. Soft-templating agents are organic mol-
ecules that can interact strongly with the inorganic species

Method Advantages

Disadvantages

- Simple process
Co-precipitation

- One-step synthesis

- Good crystallinity
Hydrothermal synthesis - Controllable size
- Simple reactant

Sol-gel - Good uniformity

- Insert large anionic groups

Anion-exchange

- Higher purity anion

- Takes full advantage of structure

Calcination-reconstruction

intercalated with any anions

Ageing process

- Controllable chemical compositions

- Avoids the formation of insoluble compounds

- Original reactant can be LDH

- Low pollution and high reactivity

- Needs further crystallization
- Weak adhesion and time-consuming

- Low output

- High temperature

- Long reaction time

- Low output and high cost

- Complex composition

- Two-step synthesis

- Neutral species cannot be intercalated
- Activity of metal oxides determines
the reconstruction

- Needs am LDH precursor prepared
by other methods

- Time-consuming

- Impure crystal phase
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that develop over them. Sodium dodecyl sulfate (SDS) is
commonly utilized for soft-templating and acts as an agent
that directs the structure as well. The SDS dose is a deci-
sive factor in obtaining a specific morphology. For example,
0.005 mol/L of SDS concentration results in a rose flower
structure, whereas a higher 0.02 mol/L concentration leads
to spherical geometry, and so on. However, when the SDS
concentration is equivalent to the critical micelle concen-
tration (CMC), the petal size diminishes, and their number
increases, eventually leading to their fusion. The process
includes dissolving M?*, M*, and urea in water and vig-
orously dispersing them for 60 min. The mixture is cen-
trifuged after being heated to around 200°C in a 100 mL
Teflon-lined stainless-steel autoclave for 6 h. The resulting
product is washed four times with distilled water before
being dried for 6 h at around 80°C [15,82-84]. The synthe-
sis of ultrathin dodecyl sulfate intercalates the MgAl-LDH
nanosheets. AI(NO,),-9H,0, Mg(NO,),-6H,0, hexameth-
ylenetetramine (HMT), and SDS are combined in distilled
water until a viscous, white liquid forms. After that, the
blend is heated to 140°C for 24 h to improve crystallization.

3.4.2. Carbon-assisted method

Many research groups have employed carbon in var-
ious forms to produce LDH-based carbon composites. Li
et al. [23] prepared ZnAl-CLDH@C by calcining ZnAl-LDH
nanosheets and coating them with ultrathin amorphous
carbon. ZnAl-LDH nanosheets synthesized by co-precipita-
tion are modified with oleic acid (OA) ligands. The result-
ing ZnAl-LDH@OA is then calcined at 450°C under an N,
atmosphere. The in-situ carbonization of OA ligands leads

to ultrathin carbon shells and produces ZnAl-CLDH@C
nanosheets that are characterized by a large specific sur-
face area and superior ability to disperse. Amin et al. [85]
investigated the feasibility of preparing the LDH of NiZnFe
and its composites with hollow-layered carbon nanotubes
(LDH-CNTs) as well as with biochar derived from date-
palm leaves (LDH-DPb). The resulting LDH and its com-
posites’ adsorbents possess good adsorption properties.
Almoisheer et al. [82] reported adopting the urea hydrolysis
method to produce a CuAl-LDH/SWCNTs nanocomposite
by complexing CuAl-LDH with single-walled carbon nano-
tubes (SWCNTs). Lyu et al. [86] hybridized MgAl-LDH
with a carbon sphere (CS) by using the emulsion cross-link-
ing method. Meanwhile, Zhang et al. [87] synthesized
CSs-LDHs composites via a hydrothermal method, their
surface properties were modified via calcination at tem-
peratures between 300°C and 800°C.

3.4.3. Synthesis of negatively charged LDHs

LDH has difficulty absorbing cationic dye and inorganic
cations due to ion repulsion from positively charged sheets.
Therefore, Bin et al. [88] attempted to produce complex
NiFe-LDH nanoflakes with montmorillonite (MMT). MMT
consists of an A’ octahedral, adjoining two sheets of Si*
tetrahedral. When Mg?* or Zn*" is substituted for Al**, a per-
petual negative charge develops on the surface of the MMT
and the interlayer. MMT/NiFe-LDHs are synthesized by the
hydrothermal method at different molar ratios of LDH and
MMT (2:1, 3:1, and 4:1), where the nickel, iron(IIl) nitrate
hexahydrate, and urea are added to the MMT solution. In
Fig. 6, four scanning electron microscopy (SEM) images

Fig. 6. Scanning electron microscopy images of MMT/Ni2Fel-LDH, MMT/Ni3Fel-LDH, and MMT/Ni4Fel-LDH, and a close-up

of MMT/Ni4Fel-LDH [88] (Copyright 2023 Elsevier).



FA. Alnasrawi et al. / Desalination and Water Treatment 297 (2023) 2674 35

show the different shapes of the surfaces of three MMT@
NiFe LDHs.

3.4.4. Preparation of mesoporous-LDH

Zhang et al. [89] proposed a new hydrothermal method
for the synthesis of mesoporous Cu/Ni/Al-LDH. The Cu,
Ni, and Al salts were dissolved in 50 mL of 0.1M HCI solu-
tion, and then the mixture was heated to 80°C for 1 h using
a reflux condenser, agitation, and ultrasonication. NaOH
was added drop by drop to maintain a constant pH of 10.
The precipitate was washed with deionizing water and
then dried for 24 h at 90°C.

3.5. LDH modification

The adsorption capacity of pristine LDHs and their appli-
cations are limited due to the lack of structural components
and functional groups. To address this problem, function-
alized LDH was synthesized by incorporating functional
groups or structural components. Due to the presence of a
positive charge, the [Mg(OH),] octahedron, and hydroxyl
groups on the surface, LDH could interact chemically and
electrostatically with the structural components or func-
tional groups in this process. There are three types of func-
tionalized LDH preparation methods: For small inorganic
or organic molecules, the intercalation process is utilized,
whereas, for larger organic molecules, the surface modifi-
cation process is utilized. Also, LDHs are loaded onto sub-
strates that are capable of providing attachment sites [18].

3.5.1. Intercalation

To increase the adsorption capacity of LDHs for hazard-
ous contaminants, LDHs are intercalated with molecules that
can cause complexation with the hazardous contaminant
ions. Intercalated LDH with sulfide has a high capacity for
absorbing ions, and its selective adsorption has received a
lot of attention. In addition, LDHs are mainly intercalated
to organic molecules that can significantly enhance the
adsorption capacity, especially for heavy metal ions. For
example, the maximum uptake of LDH intercalated with
sodium dodecylbenzenesulfonate (SDBS) and citrate for Cu®"
increased by 72.7 mg/g compared to the uptake of intrinsic

Table 3

LDH [90]. The organic functional groups like -NH, and —
COOH have many coordination atoms that can donate elec-
tron pairs; therefore, the heavy metal ions and organic com-
pounds can undergo complex reactions to form complexes.
LDHs are mainly bound with organic molecules by chemical
bonding and electrostatic contact. Usually, when LDHs are
intercalated with molecules, the crystal parameters of the
LDHs are obviously changed. XRD is utilized to define the
powder crystal structure. Unit cell parameters (usually d )
can also be used to analyze the intercalated arrangement of
the molecules between layers. Table 3 shows LDH interca-
lated with molecules, the basal spacing, and how molecules
are arranged between layers. This table shows that basal
spacing is related to the type and arrangement of the mole-
cules between the layers [18].

3.5.2. Surface modification

Some molecules find it difficult to enter the interlayer
due to the charge density, hydrodynamic radius, and other
factors, so the method of surface modification is chosen for
the preparation of LDH-based composites. Surface modifi-
cation can enhance the adsorption capacity of LDH-based
composites for contaminants and remove the limitations
of other adsorption materials in the contaminant adsorp-
tion process. The combination of bio-adsorbent materials
and LDH with high stability yields adsorbents with supe-
rior adsorption capacity [18]. Olivera et al. studied how to
prepare LDH-based composites using proteins and MgAl-
LDH. The proteins were extracted from Bilva Oil meal.
The produced composites (LDH-BP) eliminate Pb* ions,
and the authors found that 625 mg/g was the highest rate
of Pb* removal [99]. The methods predominantly used to
modify the surface of LDHs are direct cross-linking, indirect
cross-linking, and in-situ film growth. The hydroxyl groups
on the surface of LDHs play an importance role in surface
modification. Moreover, the surface modification method
combines the advantages of LDHs and other adsorption
materials [18].

4.1. Adsorption mechanisms

The adsorption mechanisms of the various hazard-
ous contaminants by LDH-based composites are mostly

Layered double hydroxides basal spacing and molecule arrangement

Origin anions dyos Intercalated molecule d’ s Arrange References
NO; 8.9. Mos, 10.7 [91]
NO; 7.51 L-cysteine 8 Horizontal monolayer [83]
Cl- 7.8 Humate hybrid 7.9 [92]
Cl- 7.82 DTPA 14.21 Inclined monolayer [93]
COr 7.62 [EDTA]* 8.04 Inclined monolayer [94]
Ccox 7.6 Tartrate 12.2 [95]
NO; 8.34 [SnS,]* 9.3 [96]
Ccox 8.8 [EDTA]* 13.9 Vertical monolayer [97]
NO; 7.69 Histidine 13.58 [15]
cox 7.66 D,EHPA 26.27 Inclination bilayer [98]
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dependent on the kind of adsorbent (hybridizing material)
and adsorbate. Generally, the basic mechanisms involved
in the adsorption process for controlling pollutants in aque-
ous environments by LDH-based adsorbates are physical
adsorption, anion-metal complexes, ion-exchange, hydrox-
ide precipitation, chemical bonding, electrostatic inter-
action, and m—m interactions [29,100-106].

Adsorption of heavy metal ions onto anionic/LDH sur-
faces is related to the formation of anion-metal complexes
and the precipitation of hydroxide by chemical bonding
with the hydroxyl groups of LDH [22,107,108]. Huang
et al. [109] concluded that lead and copper could be removed
onto Mg, AI-LS-LDH through the mechanism of anion-
exchange, as shown in Fig. 7, while Ma et al. [108] inves-
tigated the adsorption of metal-ions (M) on a polysul-
fide-LDH composite (SX-LDH). Following the formation of
the (M-S) complex, (SX-LDH) is converted to pristine LDH,
according to Egs. (7) and (8).

LDH_ + M(NO,) - LDH(NO, ), +MS,
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Fig. 7. Sketches of (a) LS in an Mg/AI-LDH interlayer and
(b) Pb* and Cu* attachment with LS-LDH [109] (Copyright
2023 Elsevier).
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The LDH-based humate (H-LDH) was synthesized
by Gonzalez et al. [92] for the adsorption of Cu*, Cd?*,
and Pb*™, which involved the mechanism of precipitating
hydroxide. Humate contains a large number of functional
groups that have oxygen. They exist as anions over a wide
pH range and then combine with the cation metal ions.
The mechanism was confirmed by analyzing the final pH
of the adsorption process. After a few minutes of starting
the adsorption process, the pH of the solution suddenly
increased. This was because metal-hydroxides formed on
the surface of H/LDH.

The adsorption mechanism of the LDH-containing car-
bon nanostructure (CNS)/LDH is controlled by the inter-
layer anion-exchange, that is, CO,*, NO,*, CI*, by the metal
ions, through chemical bonding with the hydroxyl groups or
other oxygen groups on the surfaces of the carbon materi-
als, and by physical adsorption on the exterior surfaces of
the carbon materials [38,100,110,111]. Yuan et al. [100] dis-
covered that the adsorption of chrome on graphene-LD-
H(G-LDH) comprises two phases: During the first phase,
the adsorption is inextricably tied to the memory effect of
LDH, owing to its high adsorption rate. The second process
involves the physical adsorption of G/LDH onto its exterior
surface, which occurs at a sluggish pace. The adsorption
mechanism of Cr(VI) ions onto G/LDH is depicted in Fig. 8.

For the LDH-based magnetic composites, this included
the addition of iron oxide (Fe,O,) nanoparticles on the
LDHs [104,112-115]. The water contaminant adsorption
mechanism on magnetic-LDH composites included pre-
cipitation, ion-exchange, chelation, and surface modifi-
cation. Due to its magnetic nature, introducing Fe304 into
the LDH layers enhanced the adsorption capacity and
simplified LDH separation after the adsorption process.
Table S2 shows that the LDH-containing iron nanoparticles
exhibited a large adsorption capacity of 9,127.08 mg/g for
Congo red (CR) [116], 931.24 mg/g for Acid Red 66 (AR66)
[117], and 800 mg/g for Cr(VI) [56]. The incorporation of
carbon-based materials along with Fe,O, on the layers of
LDH evolved into a novel adsorbent with superb pollutant
adsorption [104,118]. Zhang et al. [104] indicated that the

HO0C

HooC COOH

Fig. 8. Sketch presenting Cr(VI) adsorption onto G-Mg/
Al-CLDH [100] (Copyright 2023 Elsevier).
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precipitation of a carbon coating on Fe,O,-LDH caused an
increase in the adsorption capacity of U* by Fe,O,@C-LDH.
Although the precipitation reduced the surface area, the
adsorption capacity of U* by the Fe,O,@C-LDHs increased
due to the increased number of oxygen functional groups
(OFGs). Similarly, carbon-based nanomaterials were used
to increase the adsorption rate for other pollutants [119].
Other types of LDH-containing hybrid-like surfactants,
such as titania, polymer, and so on, have also shown better
water contaminant adsorption [120,121].

The two most common mechanisms reported for anionic
and cationic dye adsorption by LDH-based composites are
interlayer anion-exchange with anionic pollutants and external
electrostatic interaction between cationic or anionic dyes and
the negatively or positively charged surface of LDHs [8,32]. In
many cases, it can be demonstrated that materials with high
adsorption capacities possess both an anion-exchange and
an electrostatic interaction mechanism [32]. Furthermore, the
presence of hydroxyl groups on the LDH surface may result
in H-bonding with the dye molecules [122-124]. The existence
of OFGs on the surfaces of carbon materials acts as active
sites for the removal of the dye. Fig. 9 depicts the uptake of
methyl blue by the MgAl-LDH-carbon dots. They observe that
the adsorption depends on pH and is preferable in an acid
medium [110]. This reveals that the sorption is caused by the
electrostatic interaction of the positive charge surface between
the LDH-carbon dot and anionic dyes.

Furthermore, the inclusion of carbon dots into the LDHs
improved the amount of methylene blue (MB) adsorbed
due to the formation of H-bonding between the carbon
dots and the MB [110]. Yang et al. [17] also observed that
H-bonding, chemical bonding, and electrostatic interac-
tion between the dye molecules and surface functional
groups of CNT (C-OH and COO-) are the predominant
adsorption mechanisms for CR removal onto the MgAl-
LDH-CNT composite. Other studies have reported sim-
ilar dye adsorption behavior on other LDHs [2,122,125-
127]. Table S2 shows more mechanisms for the sorption of
hazardous contaminants onto LDH-based adsorbates.

The mechanism of adsorbing ECs utilizing LDH-based
composites as adsorbents involves chemical bonding, van
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Fig. 9. Proposed schematic of MB adsorption onto LDH-carbon
dots [110] (Copyright 2023 Elsevier).

der Waals forces, electrostatic interaction, and m—mt interac-
tion, as seen in Fig. 10a. Owing to the surplus of positively
charged in the LDH structure, the removal of anionic anti-
biotic compounds is credited to an electrostatic attraction
[128,129] and the higher anion-exchange of the LDH-based
composites, as shown in Fig. 10b [130].

Moreover, antibiotic compounds contain nitrogen and
oxygen atoms that polarize the molecules and promote
interaction between the surface hydroxyl groups of the
LDHs via van der Waals forces or H-bonding [130]. The
adsorption mechanism for the removal of neutral antibi-
otic compounds includes non-electrostatic interactions, for
example, H-bonds, m—m interactions, and surface complex-
ation [131,132]. Table S2 shows more mechanisms of the
sorption of toxic contaminants.

LDH-based carbon composites, like activated carbon,
can also favor the removal of antibiotics with aromatic
rings in their structures. Tan et al. [128] discovered that the
alkoxy and hydroxyl groups of CLDH-biochar (BC) form
H-bonds with the amino and hydroxyl functional groups of
the tetracycline (TC) molecules. Moreover, the m—m interac-
tion between the CLDH-BC and benzene rings of TC may
be included in the antibiotic molecules.

4.2. Environmental factors affecting contaminant adsorption on
LDH

To eliminate toxic contaminants from aqueous solutions
via the adsorption process, the sorption of contaminants is
determined by various variables, including pH solution,
adsorbent dose, initial contaminant concentration, contact
time of adsorbate—adsorbent, and so on. This provides an
optimal condition for any adsorbate—adsorbent system [8].

4.2.1. Effect of pH

The initial pH-solution plays a crucial role in deter-
mining the adsorption efficiency of LDH adsorption in
water-treatment applications. The pH significantly influ-
ences the chemistry of the adsorbent, the surface charge of
the LDH-based composites [8], and the conditioning of the
adsorption mechanism. The point zero charge (pH,,.) is a
crucial adsorbent property because it indicates that the pH
at the surface of the LDH is electrically neutral [129]. When
the LDH pH falls below pH,,., the surface is protonated,
and the LDH surface becomes positively charged, facilitat-
ing electrostatic interaction with a contaminant that is neg-
atively charged; in contrast, at a pH greater than pH,,, the
LDH acquires a negative charge on its hydrated surface
upon deprotonation [19]. As the pH solution rises, so does
the OH" ion concentration on the surface of the LDH-based
composites [8]. For the LDH-based composites, most of
the reported pH,,,. values are in the range of 7-8 [31,129].

Some researchers report that LDH-based composites dis-
solve at very low pH values owing to their acidic hydrolysis
nature, which indirectly reduces their ability of adsorp-
tion [133,134], while at high pH values, greater than 7, they
may cause divalent metal ions (Cu** and Pb*) to hydrolyze,
which leads to a low adsorption capacity [92,95]. The Cr(VI)
removal efficiency on calcined graphene (G)/MgAl/CLDH as
a function of pH is shown in Fig. 9. The maximum efficiency
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Fig. 10. Adsorption mechanism using LDH-based adsorbents [128,130] (Copyright 2023 Springer Nature).

occurs at a pH of 2, but as the solution-pH is raised, the
removal efficiency drops. This behavior may be ascribed
to the memory effect of the calcined LDH and the net sur-
face charge of graphene (Fig. 11a) [100]. For higher pH val-
ues, the electrostatic repulsion between the G/LDH surface
and chromium increases owing to the existence of oxygen
functional groups on graphene (G), which makes it nega-
tively charged. Calcined LDH releases OH- ions at higher
pH due to the memory effect. Thus, an increase in OH- ions
competes with the uptake of chromium anions [135].

Mallakpour et al. [136] investigated the impact of pH on
methyl orange (MO) elimination (anionic dye) on poly(vinyl
chloride)(PVC)-MgAl/LDH-MnO,, and the finding showed
that the removal efficiency decreased from 96% to 48%
when the pH increased from 2 to 4. Two attractions inter-
preted this pattern: The first one was the electrostatic attrac-
tion between the MO molecule and the positively charged
LDH-based adsorbate, and the second was the formation
of H-bonds between the MO molecule and the hydroxyl
group on the LDH surface.

A reverse tendency is seen for cationic dye adsorptions,
where the highest adsorption of malachite green (MG)
and crystal violet (CV) (cationic dyes) on C/ZnAl/CLDH is
increased from 85.67% to 97.87% at a pH that is increased
from 6 to 9, respectively. Sorption at high pH is attributable
to the fact that the pH,,. of LDHs is 5.8, and under this level
of pH, cationic dyes cannot be adsorbed. Meanwhile, a low
pH facilitates the protonation of MG and CV, which raises
an electrostatic repulsion between the LDH surface and
the dye molecule [13].

Li et al. [137] assessed the performance of minocycline
(MC) elimination on (y-AlO(OH)/MgAl/LDH/C) at diverse
pH levels. The findings revealed that changes in pH have
no considerable influence on MC adsorption, as MC with
numerous ionizable functional groups exists as a cation,
anion, and zwitterion at different pH values due to the direct

impact of the pH solution on the contaminant structure.
The higher uptake of MC on the LDH may be due to the
m— interactions and H-bonding.

4.2.2. Effect of sorbent dosage

The dose of the sorbent is an additional component that
has a direct influence on the removal of hazardous pollut-
ants from a liquid phase. According to the literature, increas-
ing the adsorbent dose tends to increase the active sites on
its surface, allowing more contaminants to be adsorbed,
but exceeding an optimum amount attains a plateau owing
to the saturation of active sites [8,19,129]. The effect of the
adsorbent dosage on the removal efficiency of lead on MnO,-
MgAI-LDH is shown in Fig. 11b [138]. The removal percent
of lead on modified MnO,-MgAI-LDHs is raised from 20%
when the adsorbent dosage is 0.01 g to almost 100% when
the adsorbent dosage is 0.05 g. Although the lead adsorp-
tion capacity on MnO,-MgAI-LDH increases up to 0.03 g
of absorbent, it then begins to decline when the adsorptive
dose is further increased. In a specific adsorbent dose range,
the adsorbent dispersion in the watery medium is uniform
and nearly all of the active sites are exposed, allowing the
lead ions to reach a greater number of active sites. Even so,
as the adsorbent dose increases, an increase in the number
of adsorption active sites with more energy may cause a
decrease in the number of adsorption active sites with less
energy, which results in a decrease in the adsorption capac-
ity. The elimination of Acid orange 7 (AO7) and methylene
blue dyes on 3D/MgAl/LDH was studied by Pan et al. [139],
who found that the removal efficiency of the dye AO7 rises
from 82% when 3D/MgAI/LDH is dosed at 0.25 g/L to 99%
when the adsorbate dose is 1 g/L, which then stabilizes
with a further increase in the dose of LDHs.

A common starting dose of LDH for adsorbing an
antibiotic compound is 1 g/L, and increasing the dose of
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Fig. 11. (a) Effect of pH solution on Cr(VI) adsorption [100], (b) effect of dosage on Pb* the adsorption [138], (c) initial Pb*
concentration effect on the adsorption process [95], (d) contact time effect on the removal of Ni*, Pb*, and Cu* [120], and
(e) effect of the common anion on the sorption of Cr(VI) [34] (Copyright 2023 Elsevier).

the adsorbent leads to higher antibiotic retention [29].
Meanwhile, by increasing the absorbent dose, the adsorp-
tion capacity decreases. Usually, is the fact that the like-
lihood of agglomeration and collision of the adsorbent
particles also rises with an increase in the quantity of the
adsorbent, leading to a decrease in the adsorption—specific
surface area [14,140].

4.2.3. Effect of the initial contaminant concentration

The initial concentration of the pollutant is the driv-
ing force for the sorption process; therefore, an increase in
that concentration causes the initial adsorption rate to rise.
However, the adsorption rate decreases as soon as the adsor-
bate molecules take over all the active sites of the adsorbent
[19]. The higher uptake at elevated concentrations may be
related to the creation of driving forces that encourage more

collisions between the adsorbate molecules and the adsor-
bent active sites (i.e.,, overcoming the mass transfer resis-
tance). It means that at higher initial solute concentrations,
the driving force is higher than at lower initial concentra-
tions. Thus, the adsorbed amount of the adsorbate per unit
mass of adsorbent will be higher at higher initial contami-
nant concentrations [129]. When the initial concentration
of contaminants is high, more contaminants will be taken
up by the unit mass of adsorbents.

Other studies attributed the higher uptake to mono-
layer adsorption at a low initial concentration, which then
transitioned to multilayer adsorption at a higher initial con-
centration. Shen et al. [95] studied the influence of chang-
ing the initial concentration of Pb* from 10-300 mg/L on
the adsorptive removal by MgAl-CO,-LDH. As shown in
Fig. 11c, the adsorption capacity for Pb* was higher when
there was a higher initial Pb* concentration.
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Zhang et al. tested the influence of the initial con-
centrations of MO and Rhodamine B (RhB) dyes on the
amount adsorbed by 3D-MgAIl-LDH in the 20-250 mg/L
concentration range. They found that the RhB adsorp-
tion capacity rose initially and subsequently plateaued
(50 mg/L) at a 200 mg/L initial concentration. Then, the
removal efficiency decreased when the initial concentra-
tion was increased to more than this value, thereby affirm-
ing the above-mentioned essential principle. Although
MO behaved differently, the adsorption capacity reached
an equilibrium when the initial concentration of MO was
more than 600 mg/L [71]. Rathee et al. [29] reported that
NiTiAl-LDH had a high efficiency for tetracycline at ini-
tial concentrations of <60 mg/L. When the initial concen-
tration of tetracycline was raised to 700 mg/L, the removal
rate dropped to 53%. They clarified that once the active
sites were full, an increase in the initial concentration of
tetracycline would decrease production.

4.2.4. Effect of contact time

The contact time of the adsorbate-adsorbent system
is an important parameter for the adsorption process’s
favorability. Upping the adsorption contact time gener-
ally leads to an increase in the elimination of contaminants
from the liquid phase until equilibrium is reached. A sum-
mary of the equilibrium times for pollutants can be seen in
Table S2. Fig. 10d demonstrates the influence of contact time
on the uptake of Ni*, Pb*, and Cu* by palygorskite-mod-
ified MgAI-LDH (Pal/LDH). While the adsorption of these
metal ions was rapid the first time, equilibrium was attained
in 4 min [120]. Nazir et al. [141] synthesized the compos-
ites ZIF/67 and ZIF/67@CoAl-LDH to remove MO (anionic
dye) and MB (cationic dye). They found that the removal
efficiency for the dye MO was 70% and 72% after 90 min of
contact time, and for the dye MB it was 80% and 67% after
100 min of contact time, respectively. Rosset et al. [142] exam-
ined the influence of altering the contact time on remov-
ing diclofenac by using different adsorbents, MgAl-CLDH,
NiAl-CLDH, and ZnAl-CLDH. High removal efficiencies
of 79.7% and 80.5% were reached after 90 min of contact
time with ZnAl-CLDH and NiAl-CLDH, respectively. For
the MgAIl-CLDH adsorbent, however, it was necessary to
wait 240 min to achieve 75.9% of diclofenac removal.

4.2.5. Effect of temperature

Temperature is a further vital parameter for the adsorp-
tion process. Increasing the temperature of the adsorption
process typically increases the adsorption capacity of the
LDH composites. This is a result of the increased contam-
inant mobility in aqueous solutions, which increases the
accessible adsorption sites and enhances the affinity of the
contaminant for the adsorbent. This indicates that the pro-
cess of adsorption is endothermic [130]. For the adsorption
of the Cr(VI) ions on G/MgAIl/CLDH, the negative value
of AG demonstrates the spontaneous nature of adsorption,
and an augmentation of the negative value of AG with
increased temperature indicates that an elevated tempera-
ture contributes significantly to the adsorption process,
leading to a high driving force for adsorption [100].

MB dye adsorption is reduced on LDH-carbon as the
temperature increases. This is because of the sensitivity of
the strength and length of the H-bonds, which is assessed
by the negative value of a parameter AH [110].

4.2.6. Effect of coexisting and competitive anions

While many studies concentrate on removing single
contaminants from aqueous systems, in actual wastewa-
ter and contaminated natural water matrices, many kinds
of pollutants will be present. The existence of these solu-
ble ions may have a competing effect on the adsorption site
[32,143]. The influence of coexisting anions on Cr removal
by BC@EDTA-LDH has been studied. The interference of
competing anions on Cr(VI) adsorption follows the order
NO* < CI" < SO*, indicating that nitrate has a relatively
low impact on its removal. The negative charge carried by
Cl- and NO* is lower than that of Cr,0,*, so the stability
of LDH is relatively high, indicating that it is not easily
replaced by Cl” and NO%; also, the negative charge carried
by SO,* is the same as that of Cr,0,*, so it has a great impact
on Cr removal (Fig. 11e) [143]. Guo et al. [144] investigated
the effects of coexistent anions (Cl;, CO>, NO*, SO, and
HPO,*) on AS removal by using CuMgFeLa-LDHs as an
adsorbent.

George et al. evaluated the impact of NaCl salt on the
absorption of MG and CV dyes on C-Zn/Al-CLDH and
noticed a reduction in the removal efficiency of dyes. This
behavior may be due to decreased electrostatic interactions
among the cations existing in the molecules of the dye and
the C-ZnAl-LDH functional groups, or due to increased
dye molecule protonation [13]. Clark et al. [58] studied the
influence of Na,SO, and Na,CO, on the sorption of RO,
and RB5 dyes by ZnAl-CO,-LDH. Their findings indicate
that SO,> has less influence on dye adsorption than CO.*.

Additionally, Chen et al. [145] examined MO dye adsorp-
tion by NiAl-CI-LDH after adding an additional anion
(PO,*) to the working solution. The order of the competitive
effect on MO dye adsorption was found to be NO* < CI
<807 <CO»<PO.

Similarly, antibiotic sorption efficiency is also affected by
the existence of competing anions. Eniola et al. [130] stud-
ied the effect of coexisting CuSO,, NaCl, and NaHCO, salts
on the adsorption of oxytetracycline (OTC) antibiotics by
CuFe,O,-Ni/Mg/Al-LDH. Based on the results, CuSO, salt
promotes OTC adsorption onto the LDH composite due to
the protonation of the adsorbent surface by the Cu* ions,
providing more active sites for negatively charged OTC
molecule adsorption by electrostatic attraction, whereas
NaCl salt suppresses OTC adsorption onto the LDH
composite.

4.3. Adsorption isotherm models

Isotherm models are essential to foresee the full adsorp-
tion behavior of practical applications and calculate the
maximum amount of contaminants removed from polluted
water at a constant temperature. Freundlich and Langmuir
adsorption isotherms are most commonly utilized to model
isotherm data. The Freundlich adsorption isotherm has an
empirical relationship and considers multilayer adsorption
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with heterogeneous energy distribution of active sites,
accompanied by the interactions of adsorbed molecules
[146,147]. The Freundlich model is given by Eq. (9).

q.=K,-C)" )

where g, is an adsorbed amount under equilibrium condi-
tion (mg/g); K, a constant of the Freundlich isotherm (mg/g)
(L/mg)¥; C, a concentration of the sorbate at equilibrium
(mg/L), and n is the intensity of the Freundlich adsorp-
tion parameter; this indicates the existence of adsorption
driving forces and the degree of surface heterogeneity.
The parameter 1 is a dimensionless number ranging from
0 to 10. Where n > 10 characterizes an irreversible iso-
therm, n > 1 characterizes preferential adsorption, and n <1
characterizes poor adsorption.

Otherwise, the Langmuir adsorption isotherm is asso-
ciated with the formation of a monolayer of solute mole-
cules on an adsorbent surface with uniform binding sites.
It hypothesizes an adsorption of a homogenous nature, with
an equal energy of adsorption for all the active adsorption
sites. The Langmuir model is represented by Eq. (10):

K C

L'qmax‘ e

10
1+K, -C, {10)

9. =

where g, is an equilibrium sorbate uptake value (mg/g);
K, a constant of the Langmuir isotherm (L/mg); g, a max-
imum uptake of sorbate (mg/g); and C, a concentration of
the sorbate at equilibrium (mg/L).

The Langmuir parameters can be used to estimate the
favorability and unfavorability of the sorption process. To
do so, use Eq. (11) to calculate the dimensionless equilib-

rium constant R, .

e ol
1+K,C,

If R, > 1, the process is unfavorable, 0 < R, <L 1 is favor-
able, R, = 1 is linear, and R, = 0 represents the process’s
irreversible characteristics [12].

The Temkin adsorption isotherm (TM), a less widely
used model, explores the impact of indirect adsorbate—
adsorbate interactions on the adsorption system, presum-
ing that the adsorption heat of all molecules in the layer
reduces linearly as the surface coverage increases [83];
this is expressed in Eq. (12) [39]:
q,=B-(A;-C,) (12)
where B is a constant related to the heat of adsorption, and
A, is the constant of the Temkin isotherm.

The Dubinin—-Radushkevich model determines if the
sorption process is chemical or physical. It is based on the
fact that the size of the sorbate is comparable to the size of
the micropores (theory of micropore volume filling), and
the adsorption potential (¢) can be used to represent the
adsorption equilibrium relationship, independently of
temperature. It is given in Eq. (13).

9, =4q,exp(-K£*) (13)

where g, represents theoretical saturation sorbate adsorp-
tion loading; K, is a constant of Dubinin—Radushkevich; and
€ is a potential of Polanyi [68,148,149]. Non-linear regres-
sion was employed by [6] to fit an equilibrium adsorption
data to all of the previously discussed isotherm models.
The best relationship in descending order is reported to
ve as follows: Langmuir > Temkin > Freundlich > Dubin
in—Radushkevich models, for both the Eriochrome Black T
(EBT) and MO dyes. In most studies, the Freundlich model
outperforms the Langmuir model in terms of the adsorption
data fit [100,103,150]. The maximum adsorption capacities
of the LDH-based composites for numerous toxic contam-
inants are summarized in Table S2.

4.4. Adsorption kinetic models

Adsorption kinetic models are important for fitting the
equilibrium data of adsorption because they aid in illustrat-
ing rate-limiting steps, as well as the mechanism of interac-
tions between the adsorbent and the adsorbate. Adsorption
kinetics is used to measure the diffusion of the solute in
the pores and assess the adsorption rate in relation to time,
at a constant concentration. Its primary significance is in
describing the rate of solute uptake and the time required
by the adsorption process to reach equilibrium [12,19]. To
predict the order and rate of the adsorption process, two
kinetics models are used: The pseudo-first-order model
(PFO) mentioned in Eq. (14) and the pseudo-second-order
model (PSO) presented in Eq. (15).

In(q, —q,)=Ing, —k, -t (14)

t

1
9 4.

+
q. -k

(15)

2

where ¢, and g, are the adsorption rate (mg/g) at time and
equilibrium, respectively; k, is a constant of the PFO (min-
') and k, is a constant of PSO (g/mg-min) [19,129,151]. The
regression coefficients and slopes of the straight lines of
In(g, - g,) vs. the time plot (PFO) and t/g, vs. the time plot
(PSO) can be used to postulate the order and rate constant
of the adsorption process, respectively. The PSO works well
when chemisorption is the rate-controlling step [19,152].
The RBB dye adsorption was investigated by Gidado and
Akanyeti on six adsorbents, including MgAI-LDH, ZnAl-
LDH, ZnMgAIl-LDH, and the calcined forms of each cal-
cined form. It is stated that all three pristine LDHs fit the
PFO kinetic model, whereas the three calcined forms fit the
PSO kinetic model [153]. Other studies that fit the equilib-
rium data to kinetic models are summarized in Table S2.

4.5. Regeneration processes

The reuse and regeneration of the spent LDHs is a
vital determinant for making a large-scale adsorption sys-
tem more efficient and economical. An efficient regener-
ation process should restore the adsorbent to its original
properties for effective reuse. Several techniques are avail-
able for LDH-based adsorbent regeneration, utilized to
remove the described pollutants: (i) thermal treatment, in
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which saturated LDHs are heated to high temperatures; (ii)
advanced oxidation methods; (iii) desorption processes, with
alcohols or salts; and (iv) eluting/mixing appropriate sol-
vents to allow contaminants to be desorbed. Thermal treat-
ment is the most prevalent method for regenerating adsor-
bents. In the gathered literature, it is important to note that
only a few research articles that include LDH regeneration
studies were found [8,19,129].

A typical regeneration treatment process for Fe,O,-Mg/
Al-LDH was conducted by adding 0.01 mol/L. NaNO, and
Co™ to Fe,O,-Mg/AI-LDH. The solid obtained was washed
with HCl and high-purity Milli-Q water, until Co*" could
not be determined in the supernatant. The sorption/desorp-
tion processes were repeated for eight cycles. Even after
eight cycles, the sample that was regenerated was able to
remove only 80% of the Co* [114].

Desorption of adsorbed-Cr(VI) was performed by [100]
in the solution of a mixture of Na,CO, and NaOH, and sub-
sequent calcination at 500°C, which regenerated G-MgAl-
CLDH at a desorption time of 12 h. After six consecutive
adsorption/regeneration cycles, the regenerated sample
showed 87.6% removal of Cr(VI), which decreased by only
7.4% compared to the original G-Mg/Al-CLDH.

Guo et al. [144] used the sodium salt of PO as a
desorption solution in their desorption experiment of arse-
nate As(V) from CuMgFeLa-LDH. The desorption rate of
As(V) increased as the concentration of PO > increased. The
desorption rate reached 52.5% when the PO,* concentration
was 1,000 mg/L. After six regeneration cycles using ethanol
and an HCI mixture as regenerating agents, the adsorption
efficiency of Pb* on G-MgAIl-LDH was practically con-
stant [133]. Sodium acetate was also utilized to investigate
Pb* desorption [154].

The desorption of anionic dye happens easily in an
alkaline solution, as the electrostatic attraction between the
surface of the adsorbent and the dye molecule is weakened.
Ahmed et al. [68] were successfully able to remove 90% of
the dye after five cycles of elution in warm water for 2 h.
For the cationic dye MB removal, Aldawsari et al. [155] uti-
lized a mixture solution of NaCl and M HCI, which yielded
70% removal of the dye after five regeneration cycles. A
mixture of Co* and ozone was used as a catalyst and oxi-
dant to degrade MO adsorbed on a rGO/Ni/MMO hybrid
for 5 min, showing just a 15% reduction in the removal effi-
ciency of MO on the rGO/Ni/MMO hybrid after five regen-
eration cycles [101].

A different approach was employed by investigators
[23] to remove MO dye from ZnAl-CLDH@C nanosheets,
using desorption with Na,CO, and NaOH solutions. Then,
a thermal treatment was performed. Even after five cycles
of regeneration, the composite nanosheets’” morphology
was still unchanged, as evidenced by the SEM photo-
graphs, and yielded up to 96% of MO dye removal. Meili
et al. [156] desorbed MB from a biochar-LDH composite
using a methanol and sodium chloride mixture. Six regen-
eration cycles were implemented; the thermal treatment
was performed after the third cycle of regeneration because
it was noticed that the LDH had lost its lamellar morphol-
ogy after the third regeneration cycle. In general, thermal
treatment is applied when the adsorbent-dye interaction is
strong and the solvents do not yield the expected results.

In this process, a dye-saturated LDH-based adsorbent was
heated for a few hours at about 500°C, and the adsorbent’s
surface was regenerated before being reused [27,69].

The effective desorption of diclofenac antibiotic from
spent SiO,@LDH hierarchical spheres (SiO,@LDH-HSs) was
described by Chen [157]. The regeneration process included
utilizing an advanced oxidation method by using an oxone
as the oxidant and Co* ions as the catalysts to decompose
the adsorbed diclofenac. The removal efficiency of the regen-
erated sample was consistently higher than 90%, even after
four regeneration cycles. Despite being less efficient, the
LDH-based adsorbents have also been regenerated by pro-
cesses of desorption with ethanol [29], NaOH [128,158],
or a mixed salt solution [159]. The antibiotic removal rate
of the regenerated adsorbents decreased progressively
with each run, which was mostly owing to the incomplete
desorption process [128,160]. Table S2 also contains infor-
mation about the reagents that are commonly used for the
regeneration of spent LDHs from aqueous solutions.

4.6. Toxicity of LDH-based composites and related matters

LDHs and their composite materials have promising
potential due to their null or low toxicity in water treat-
ment operations. LDHs are suitable as alternative antibi-
otic delivery mechanisms because they are more stable,
biocompatible, and less toxic than the standard nano-anti-
biotic carriers. Kura et al. [161] studied levodopa antibiotic
delivery with Zn/Al-LDH. The negatively charged antibiotic
levodopa provided further stability between the two posi-
tively charged layers of LDH. An intercalated, controlled,
and targeted antibiotic delivery has been developed to be
non-toxic. LDHs have also been investigated for pharmaceu-
tical formulations, such as for cancer therapy, due to their
non-toxicity, and it does not have side effects on human
health therapy when compared to the other nano-antibiotic
carriers [21]. Moreover, LDHs have been extensively used
in water treatment research over the last decade, with no
reported health risks. LDHs have the ability to efficiently
remove toxic heavy metals and harmful dyes from water,
making the water suitable for drinking. Furthermore, due
to the clayey nature of LDHs, they have a beneficial health
effect on humans rather than a toxic one [21].

5. Conclusion

The process of developing adsorbents is a continuous
one due to the importance of these materials in the waste-
water-treatment process, especially for the removal of pol-
lutants that are dangerous or toxic in nature. This study
has reviewed previous studies discussing the utilization of
LDHs to remove various pollutants by adsorption. It finds
that LDHs have a high adsorption capacity for many organic
and inorganic pollutants. In addition, the LDH adsorption
capacity is significantly dependent on environmental condi-
tions such as the pH value. Isotherm and kinetic adsorption
processes have also been discussed, and it is found that the
adsorption process mostly obeys the Langmuir isotherm
and second-order kinetic models, indicating the adsorption
of pollutant molecules via chemosorption onto the mono-
layer of the homogeneous LDH active sites. However, there
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is a scientific gap represented by the use of LDHs for the
removal of radioactive materials and gaseous pollutants.
In terms of performance, LDHs exhibit the highest adsorp-
tion capacity for dye removal, reaching up to 9,127 mg/g
for Congo red dye.
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