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a b s t r a c t
During the last two decades, the theoretical calculation has emerged as one of the most effective 
approaches to model, predict and optimize the behavior of chemical processes, which could save 
time and money. Some of the models used are the response surface methodology (RSM) and the 
artificial neural network (ANN). The present study aims to compare the predictive efficiencies of 
the RSM and the ANN models applied to the removal of fluoride ions from NaF-doped ground-
water by nanofiltration (NF) using three membranes (TR60, NF270 and NF90). An RSM-based cen-
tral composite model (CCD) and ANN-based on feed-forward, back propagation network (FFBBN) 
are used in which the effects of input variables are initial fluoride concentration (IC) and trans-
membrane pressure (TMP) on the fluoride rejection that is considered as a response. The two meth-
odologies are compared for their predictive abilities in terms of root mean square error (RMSE), 
coefficient of determination (R2) and average absolute deviation (AAD). For RSM model, a regres-
sion coefficient R2 > 0.83 is obtained for fluoride rejection efficiency for all three membranes and 
both parameters (IC and TMP) have a significant effect on fluoride rejection for both membranes 
(TR60 and NF270), whereas for the NF90 membrane they have a slight effect. The ANN model 
shows excellent prediction of fluoride rejection with correlation coefficient values close to unity 
(R2 > 0.998) for the three membranes. In terms of comparison and based on the estimation param-
eters (RMSE, R2 and AAD), both models show good predictions for fluoride rejection. while, the 
ANN model proves to be more accurate compared to the RSM model. Furthermore, RSM has the 
advantage of providing a regression equation for prediction and shows the effect of experimental 
factors and their interactions on the response compared to ANN.

Keywords:  Response surface methodology (RSM); Artificial neural networks (ANN); Nanofiltration; 
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1. Introduction

The third pillar of science and engineering is mathemat-
ical modeling. It aims to describe the different aspects of the 
real world, their interaction and their dynamics through 
mathematics, accomplishing the two more traditional dis-
ciplines of theoretical analysis and experimentation [1]. It 
is a representation or an abstract interpretation of physical 

reality, accessible to analysis and calculation, which uses 
simulation. Indeed, there is a narrow relationship between 
modeling and simulation, in particular to simulate a sys-
tem, a model and/or several models are needed [2,3]. These 
models play an important role in the estimation and opti-
mization of any system, leading to efficient and economical 
designs of whatever field [4,5]. Among its models, statisti-
cal models can be defined as a field that studies phenomena 
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through the collection, processing, analysis, interpretation 
and presentation of data in order to make them understand-
able to all [6]. Applied statistics is used in almost all fields 
of human activity: engineering, management, economy, 
biology, computer science, physics and chemistry [7].

In the field of membrane science and technology, mod-
eling has become a valuable tool for the prediction of 
membrane separation processes. Some of the modeling 
tools that are capable of solving linear and nonlinear mul-
tivariate regression problems are the RSM and ANN. Both 
approaches do not require an expressive physical meaning 
of the system or process under consideration. They deter-
mine a relationship between the system variables and the 
response [8–11]. In addition, these techniques are very 
useful tools for reducing the time and cost of studies [12].

RSM is considered a fast and useful procedure for the 
study, optimization and modeling of complex processes [13]. 
It is based on experimental data using the basic principles 
of statistical design, namely design of experiments (DoE), 
as well as regression modeling and process optimization 
techniques [14,15]. There are several types of response sur-
face designs, including composite central designs (CCD), 
Box–Behnken designs (BBD), and Doehlert designs (DD) 
[16]. CCD is an extremely efficient and practical method to 
design and study an experimental space. It is used to design 
experiments with minimal calculation effort. In addition, 
the CCD defines center points and star points that increase 
the ability to estimate, optimize and predict responses with 
high accuracy and to observe details [17].

ANN is a statistical modeling tool that was developed 
to understand nonlinear multi-variable systems [18]. It has 
been used in many areas of science and engineering [19]. A 
typical ANN consists of an input layer, one or more hidden 
layers with many hidden neurons and an output layer. These 
layers are mathematically linked by weights and biases. 
There are several neural network models, such as feedfor-
ward model (FF), multilayer perceptron (MLP), and radial 
basis function (RBF) [20]. The most commonly used neural 
network algorithm is the back-propagation neural network 
(FFBPN), including Levenberg–Marquardt (LM) [20]. The 
main use of FFBPN is to learn and map the relationships 
between inputs and outputs to achieve minimum error [21].

Due to their effectiveness in many applications, these 
two approaches (RSM and ANN) are used in membrane 
processes to predict and model the rejection of fluoride ions 
by the NF process.

Fluoride is an essential constituent for humans and ani-
mals. However, the total amount ingested or its concentra-
tion in drinking water must be within certain limits. When 
the fluoride concentration is present in a narrow concen-
tration range (0.7–1.5 mg/L), it plays an imperative role in 
bone mineralization and also acts as an antibacterial agent 
in the mouth. On the contrary, an excessive concentration 
of fluoride can have a negative effect on bones and teeth 
(dental and skeletal fluorosis) [5]. For this reason, the WHO 
has set a guideline value of 1.5 mg/L for fluoride in drink-
ing water [22]. In many parts of the world, groundwater has 
very high concentrations of fluoride, so that fluoridation of 
drinking water and the resulting fluorosis in humans is a 
global problem. The latest estimates suggest that approxi-
mately 200 million people suffer the terrible fate of fluorosis 

[5,18,22]. Therefore, many technologies have been devel-
oped to remove excess fluoride from drinking water, includ-
ing adsorption [22], ion exchange [23], electrodialysis (ED) 
[24], precipitation/coagulation [25] and pressurized mem-
brane technologies such as nanofiltration (NF) and reverse 
osmosis (RO) [5,18,26].

ANN and RSM are modeling methods that have been 
progressively applied during the last years for the simula-
tion and optimization of separation processes, among them 
membrane processes, especially NF. Addar et al. [5], used 
the RSM based on the CCD to optimize and model the fluo-
ride removal process by three NF membranes by employing 
as input variable (TMP and initial fluoride concentration) 
and as output variable the permeate fluoride concentra-
tion, fluoride rejections and permeate flux. The analysis 
of variance shows a high value of the coefficient of deter-
mination (R2 > 0.83), for the three membranes and for the 
three responses thus ensuring a satisfactory fit of the sec-
ond-order regression model with the experimental data. In 
another study, Addar et al. [18], investigated groundwater 
defluoridation by NF by testing three membranes (NF90, 
NF270 and TR60) where they compared one statistical 
method (ANN) and the other mathematical, coupled Film 
Theory model with Nernst–Planck equation (NP-FT) to 
predict and explain the variation of fluoride rejections as 
a function of permeate flux. For ANN, the results obtained 
showed a perfect correlation (output exactly equal to the tar-
get) with R2 values > 0.9483, in terms of comparison between 
the two models used, the ANN model presents a superior-
ity in the prediction of fluoride rejection. Jadhav et al. [27], 
Used RSM-based CCD to modeling the removal of multiple 
contaminants such as fluoride, arsenic, sulfate and nitrate 
by two membranes (NF90 and NF270). The significance of 
the quadratic model is determined by the F-value of the 
model, a large F-value (85189.92 for NF90 and 6352140.52 for 
NF270) is obtained indicates that the model is significant for 
both membranes. Bowen et al. [28], applied ANN to provide 
a means of modeling the performance of the NF process, 
thus used ANN to predict the rejection of single salts (NaCl, 
Na2SO4, MgCl2 and MgSO4) and mixtures of these salts at 
a spiral rolled NF membrane. They found good agreement 
between ANNs predictions and experimental data single 
salts and mixtures. Srivastava et al. [29], used predictive 
models based on machine learning techniques such as RSM 
and ANN to predict the permeate flow rate, water recovery, 
salt rejection, and specific energy consumption (SEC) of the 
RO and NF pilot plants, in order to optimize and compare 
the RO and NF for better performance. They found that the 
difference between the RSM and ANN predictions is small 
for the two pilot plants. Emami et al. [30] studied the predic-
tion and optimization of removal efficiency and permeate 
flux behavior of aqueous Pb2+ solution in NF process using 
RSM and different multilayer perceptron neural network 
(MLP-ANN) structures. Regression coefficients of R2 = 0.99 
and R2 = 0.9986 were obtained for the RSM model and for 
the best (MLP-ANN) structure, respectively. Moreover, the 
comparison between the models showed that the MLP-
ANN model is more precise than the RSM model in pre-
dicting the empirical data.

The objective of our work is to compare two statisti-
cal mathematical methods (RSM and ANN) in describing 
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and modeling the phenomenon of fluoride ion removal by 
NF using three membranes (TR60, NF270 and NF90), for 
groundwater doped with different initial fluoride concentra-
tions (0.5, 10, 15 and 20 mg/L). The RSM and ANN are used 
by employing as input variable (TMP and IC) and as output 
variable the fluoride rejections. The results obtained by these 
two methods are discussed and analyzed. The comparison 
of the efficiency of these two methods is based on the calcu-
lation of the different estimation parameters (RMSE, ADD, 
and R2), this is the first report comparing RSM and ANN 
in the fluoride removal by NF.

2. Experimental set-up

2.1. Characteristics of the feed water

The experiments are carried out on natural groundwa-
ter from the Benguerir region doped with NaF at different 
concentrations. A very slight variation in pH and conduc-
tivity were detected. The results of the feed water analysis 
are provided in Table 1.

2.2. NF unit pilot testing

The experiments are performed on a pilot plant NF/RO 
(E 3039) supplied by TIA (France), equipped with two pres-
sure vessels in series (Fig. 1). The applied TMP can be varied 
in the range of 5 to 70 bar using manually operated valves. 
Each pressure vessel contains one element. The pressure 
drop is about 2 bar corresponding to 1 bar of each pressure 
vessel. The two spiral modules are equipped with two iden-
tical commercial membranes. The water to be treated is taken 
from the tank by a pump and admitted to the first vessel, 
the retentate is admitted to the second vessel and the two 
permeates are recovered and mixed.

The washing is carried out by a basic solution of sodium 
hydroxide NaOH at pH between 9 and 10 for 10 min, fol-
lowed by a rinse with water, then a washing with a solution 
of sulfuric acid H2SO4

 at pH between 3 and 4 for 15 min.
The temperature is maintained at 29°C using the heat 

exchanger. Permeate samples are collected and the water 
parameters are determined analytically following the 

standard methods previously described [31,32]. The other 
parameters followed are the ones listed below:

The permeate flux is given by Eq. (1) [5,18]:
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where S is the membrane area (m2) and QP the flow rate of 
the permeate (L/h or m3/s).

The recovery rate (Y) is defined as:
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where QP is the permeate flow (L/h) and Q0 the feed flow 
(L/h).

Salt rejection (R) is defined as:
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where CP is the solute concentration in permeate (g/L) 
and C0 the solute concentration in the feed water (g/L).

Table 1
Characteristics of the feed water

Parameters Feed water Moroccan guidelines [5] WHO standards [18]

Temperature (°C) 29 – –
Turbidity, NTU <2 – –
pH 7.41 6–9.2 6.5–8.5
pHs 7.80 – –
Electric conductivity, µS/cm 1,492 2,700 –
Hardness, mg/L CaCO3 440 500 500
Alkalinity, mg/L CaCO3 320 200 –
Fluoride, mg/L 0.5, 5, 10, 15, 20 1.5 1.5
Sulphate, mg/L 116 200 200
Nitrate, mg/L 20 50 50
Chloride, mg/L 560 750 250
Sodium, mg/L 246 – –

 

Fig. 1. Schematic diagram of the NF/RO pilot plant [5,18]. 
T: Tank; M: NF module; P: Permeate recirculation; R: Reten-
tate recirculation; H: Heat exchanger; 1: High pressure pump; 
2: Pressure sensor; 3: Pressure regulation valves.
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2.3. Characteristics of the membranes

The two modules are equipped with two identical spi-
ral wound NF membranes. Table 2 gives the characteristics 
of the three NF membranes used. After the run, membranes 
are cleaned with alkaline and acidic cleaning solutions 
according to the manufacturer recommendations.

2.4. Modelling by RSM

The experimental design of fluoride removal is per-
formed using RSM. In this study, CCD, which is a well 
exploited model of RSM is employed to modeling fluoride 
removal by NF using three membranes. The input param-
eters used: TMP (X1) and IC (X2) which are varied at five 
different levels (–1.14, –1, 0, +1, + 1.14), as shown in Table 3.

The process response studied for the model is fluoride 
rejection. The sum of the series of experimental designs 
N, can be evaluated using Eq. (4):

N kk� � �2 2 Nc  (4)

where k is the number of input factors. The terms 2k, 2k 
and Nc represent the factorial points, the axial points, and 
the center points, respectively.

The experimental data are collected after 13 experimen-
tal runs have been completed. The experimental results for 
all coded factors and the actual NF response values for the 
three membranes are presented in Table 4. The performance 
of each NF membrane is evaluated in terms of rejection of 
fluoride (Y1) which is considered a response. The follow-
ing polynomial equation describes the predicted values 
of the Y1 response as:
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where Y1 is the predicted response, β0 is the constant coeffi-
cient, βi is the linear coefficients, βij is the interaction coeffi-
cients, βii is the quadratic coefficients, and Xi and Xj are the 
coded values of the variables TMP and IC, ξ is the residual 
term (followed by the equation). The experimental design 
and the analysis of the experimental data are carried out by 

software (Design–Expert). Model adjustment and signifi-
cance are determined by analysis of variance (ANOVA).

2.5. Modelling by ANN

The FFBPN is used for its capacity to model any func-
tion. Fig. 2 shows the general framework of the FFBPN 
model. In addition, the FFBPN learning rule is used to adjust 
the weights and threshold values of a system to obtain 
the minimum possible error [33]. The input neurons have 
received the experimental data and the network has given 
its outputs (ANN simulation data). If the ANN output is 
not equal to the measured experimental outputs, then our 
procedure calculates the mean square error between both 
values and modifies the ANN weights to minimise it. The 
learning data is normalised to the range {0–1}. Sixty per-
cent of the Collected data is used for model training, while 
30% of the data is equally divided for testing and valida-
tion, respectively. The model is then trained in accordance 
with Eq. (6) until the mean square error is (or becomes)  
minimal [33].

x W xJ ji
i

n
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where xJ is the variable’s new value, xi is the variable’s ini-
tial value and Wji is the neuron/variable’s weight link value. 
The activation function between the input and the hid-
den layer is (tansig) and log-sigmoid (logsig), as indicated  
by Eq. (7).

Table 2
Characteristics of the membranes used

NF270*4040 NF90*4040 TR60*4040

Area (m2) 7.6 7.6 6.8
Salt rejection (%) >97.0% 97% –
Pmax (bar) 41 41 10
Material Polyamide Polyamide Polyamide
Contact angle (°) [18] 27 54 –
Zeta potential (mV) [18]
pH = 3 4.9 3.7 –
pH = 12 –25.6 –19.4 –

Salt rejection based on the following test conditions 2.000 mg/L MgSO4, 77°F (25°C), and 15% recovery rate at TMP 4.8 bar.
Salt rejection based on the following test conditions 2.000 mg/L NaCl, 77°F (25°C), and 15% recovery rate at TMP 10 bar.
Salt rejection based on the following test conditions 2.000 mg/L NaCl, 77°F (25°C), and 15% recovery rate at TMP 15.5 bar.

Table 3
Independent input variables range in terms of coded levels

Factors Coded level

–1.14 –1 0 +1 +1.14

IC (mg/L): 
TR60-NF270-NF90

0.51 3 9 15 17.48

TMP 
(bar)

TR60 3.96 5 7.5 10 11.03
NF270 2.92 5 10 15 17.07
NF90 4.82 10 22.5 35 40.177
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The purelin function is used as Eq. (8) between the 
hidden layer and the output layer:

f x x� � �  (8)

Finally, the reliability of the model is verified with a 
new (unknown) dataset and the results are found to be 
satisfactory. The justification for these steps is discussed in 
the results section. The FFBPN used as an ANN network 
to predict fluoride rejection by the three NF membranes 
tested, uses the same input and output as the RSM-CCD. 
The results obtained are mentioned in Table 4.

3. Results and discussion

3.1. Effect of TMP on the flux of permeate

The relationship between permeate flux and TMP, 
illustrated in Fig. 3, was investigated using batch mode 
for groundwater samples from the Benguerir region, 
which were doped with various fluorides. This dataset has 
already been published in our previous papers [5,18].

As shown in Fig. 3, the permeate flux increases almost 
linearly with TMP according to Darcy’s law [18]. This 
flow behavior is well established in the literature [5,18]. In 
this illustration, the permeate flux follows the following 
order: NF270 > TR60 > NF90.

3.2. Effect of TMP and IC on the fluoride rejection

3.2.1. Modeling by RSM

3.2.1.1. Validation by ANOVA

The significance and performance of the regression 
model are examined by ANOVA analysis of variance for 

Table 4
CCD design matrix of two variables and the experimentally determined, RSM predicted and ANN predicted values for three 
membranes

Run Coded variables values Responses values

X1 X2

TR60 NF270 NF90

YExp YRSM YANN YExp YRSM YANN YExp YRSM YANN

1 0 0 0.765 0.765 0.765 0.805 0.805 0.804 0.99 0.986 0.990
2 0 0 0.710 0.725 0.710 0.805 0.805 0.804 0.995 0.989 0.994
3 –1 1 0.827 0.860 0.826 0.806 0.765 0.805 0.993 0.991 0.993
4 1 –1 0.765 0.765 0.765 0.805 0.805 0.810 0.994 0.995 0.994
5 0 0 0.765 0.765 0.765 0.742 0.797 0.741 0.993 0.991 0.993
6 –1.14 0 0.765 0.765 0.765 0.63 0.601 0.630 0.99 0.992 0.99
7 0 0 0.718 0.716 0.718 0.805 0.805 0.806 0.977 0.985 0.976
8 0 1.14 0.765 0.765 0.765 0.805 0.805 0.806 0.995 0.997 0.995
9 1.14 0 0.766 0.730 0.766 0.42 0.434 0.422 0.982 0.983 0.981
10 1 1 0.723 0.709 0.723 0.742 0.753 0.740 0.993 0.991 0.993
11 0 0 0.824 0.805 0.824 0.734 0.689 0.734 0.993 0.991 0.993
12 0 –1.14 0.55 0.572 0.549 0.466 0.481 0.466 0.995 0.998 0.995
13 –1 –1 0.6 0.597 0.6 0.726 0.743 0.726 0.993 0.991 0.993

 
Fig. 2. Proposed neural network architecture [18].
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fluoride removal by NF, the results are presented in Table 5. 
The P values for fluoride rejection for all three membranes 
are strictly below the significance level (α = 0.05), indicating 
that the mathematical models or regression for the response 
fit the experimental data extremely closely. The reliabil-
ity of the model and the quality of the adjustment of the 
model values to the experimental data is demonstrated by 
the R-squared correlation coefficient which is greater than 
0.83 for all three membranes. These results indicate that 
more than 83% of the sample variation for fluoride rejection 
is attributed to the two factors.

3.2.1.2. Regression equation

A quadratic polynomial is established to identify the 
relationship between the Yi response and the various fac-
tors. The fluoride rejection regression equations generated 
for TR60, NF270 and NF90 are Eqs. (9)–(11), respectively.

Y X X
X X X

1 1 2

1 2 1
2

42 50729 0 485391 4 52497
0 088667 0 163200
� � � �

� �

. . .
. . �� 0 167500 2

2. X  (9)

Y X X
X X X

1 1 2

1 2 1
2

6 22187 5 13522 8 43217
0 136167 0 176475 0
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. . .
. . ..284705 2

2X  (10)

Y X X
X X X

1 1 2

1 2 1

96 88400 0 048940 0 283158
0 002533 0 000040
� � � �

� �

. . .
. . 22

2
20 008646� . X  (11)

According to regression Eqs. (9)–(11), for NF270 and 
TR60 membranes, the variables X1 and X2 have positive 
effects on Y1, since their associated regression coefficients are 
positive. The variables X1X2 and X2

2 have negative effects on 
Y1, however for X1

2 has an opposite effect on Y1. In addition, 
the variables (X1X2, X1

2 and X1
2) have insignificant effects on 

Y1 since their coefficients are close to zero. A positive value 
represents an effect that favors optimization, while a neg-
ative value indicates an inverse relationship between the 
factor and the response [16,34]. This is confirmed by the 
overall analysis of the ANOVA results. The variables found 
by the NF270 membrane are higher than those found by the 
TR60 membrane. For the NF90 membrane variables are all 
almost zero.

Fig. 4 compares the experimental rejection values of 
fluoride ions to the predicted data for three membranes.

Fig. 4 shows the plot of predicted vs. actual response 
values. The predicted values were uniformly and closely 
distributed to the actual responses and exhibited reasonable 
agreement (R2 > 0.83) for all three membranes. This shows 
that the regression models generated can effectively describe 
the relationship between the factors and the responses 
in the range studied. The distribution of the data points 
were almost uniformly close to a straight line.

3.2.1.3. Fluoride rejection

Figs. 5–7 show the 3D response surfaces and 2D con-
tour plot for the interaction effect of two parameters 
(TMP and IC) on the response for the three membranes.

From Figs. 5–7 we can notice:

• For TR60 and NF270, have a significant effect of IC on flu-
oride rejection. Whereas the effect of TMP less important. 
In addition, TMP seems to affect fluoride rejection more 
when IC is high than when it is low.

• For NF90, both parameters slightly affect the fluoride 
rejection,

• For the range of IC and TMP studied, the fluoride 
rejection follows the sequence: RNF90 > RTR60 > RNF270.

All results of the 3D response surface and 2D contour 
plot for the interaction effect of two parameters for the 
three membranes are already confirmed by the regression 
equations.

3.2.2. Modeling by ANN

3.2.2.1. Fluoride rejection

Using ANN with 10 hidden neurons, as input IC and 
TMP are taken, and as output the fluoride rejections and 
the results obtained are mentioned in Table 4. Fig. 8 shows 
the fluoride rejection predicted by the ANN model com-
pared to the experimental values for the three membrane, 
the operation of prediction is performed on the MATLAB 
software.

According to Fig. 8, for the three membranes, all the 
points are located very close to the straight line, which 

Table 5
ANOVA of fluoride rejection response for the three membranes

Response Membranes Variation 
source

Sum of 
squares

Degree of 
freedom

Mean 
square

F-value P-value R2

Fluoride 
rejection

TR60
Regression 716.74 5 143.35 27.27 0.0002 0.9512
Residual 85.76 7 12.25 – – –
Total 1,056.57 12 – – – –

NF270
Regression 1,983.79 5 396.76 33.12 <0.0001 0.9594
Residual 121.37 7 17.34 – – –
Total 343.05 12 – – – –

NF90
Regression 3.00 5 0.6000 6.93 0.0122 0.8320
Residual 0.5620 7 0.0803 – – –
Total 3.73 12 – – – –
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TR60 NF270 

NF90

Fig. 4. Predicted vs. actual values for fluoride rejection.

  

a b 

Fig. 5. 3D response surface (a) and 2D contour plot (b) for the interaction effect of two parameters on the response for TR60 
membrane.
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indicates that the prediction of the ANN model is excel-
lent in the valid region and the value of the correlation 
coefficient is closed to unity (R2 > 0.998), showing the lin-
ear relationship between the experimental and predicted 
fluoride rejection.

3.2.2.2. Validation of the model ANN

The results obtained for the training, the test, the val-
idation and the global R2 for the training data set, for the 
three membranes are depicted in Fig. 9.

In order to predict fluoride rejection values using the 
ANN model, 75% of the data are used randomly for training. 
The remaining data are classified as test and validation data 
[18]. Fig. 9 shows the summaries of the R2 plots during the 
training, test and validation phases for the three membranes. 
The best linear fit equations for the training, validation, test, 
and global subsets mostly had a slope between 0.99 and 1. 

The R2 values are all greater than 0.99 for all three mem-
branes, indicating close agreement between the experimental 
and modeling results. On the other hand, for all curves, the 
points are located very close to the straight line. Therefore, 
the trained ANN model shows an accurate simulation 
of fluoride rejection for the NF fluoride removal process.

3.2.3. Comparison of RSM and ANN

RSM and ANN are modeling models used to solve lin-
ear and nonlinear multivariate regression problems [4]. 
To evaluate the performance of ANN and RSM for the flu-
oride removal process using the three NF membranes. The 
predicted experimental results were evaluated in terms of 
estimation parameters, namely the root mean square error 
(RMSE), coefficient of determination (R2) and average abso-
lute deviation (AAD) which are defined by Eqs. (12)–(14), 
respectively:

 

a b 

Fig. 6. 3D response surface (a) and 2D contour plot (b) for the interaction effect of two parameters on the response for NF270 
membrane.

  

a b 

Fig. 7. 3D response surface (a) and 2D contour plot (b) for the interaction effect of two parameters on the response for NF90 
membrane.
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where yp is the value predicted by the ANN model, yex is 
the experimental value, n is the number of data, and ym is 
the mean of the experimental value, the results obtained 
are presented in Table 6.

According to the results reported in Table 6 and the 
deviation of the predicted response values from the experi-
mental data for the two models shown in Fig. 10. The RMSE 
and AAD values presented by ANN are lower than those 
of the RSM, while the R2 values of ANN are greater than 

those reported by the RSM. A value of RMSE is always pos-
itive and a value of zero would indicate a perfect fit to the 
data. In most cases, a smaller RMSE value indicates better 
accuracy than a larger RMSE value. Regarding ADD, the 
smaller the standard deviation, the more the values are 
clustered around the mean and the same is true for the 
inverse [34]. Both models fit the experimental data well. 
However, the predictive power of the ANN is found to 
be more strong than that of the RSM. On the other hand, 
RSM has the advantage of providing a regression equa-
tion for prediction and showing the effect of experimental 
factors and their interactions on the response compared to 
ANN. Nevertheless, the main limitation of the RSM method 
involves a quadratic nonlinear correlation only. Since ANN 
can inherently capture almost any form of nonlinearity, it 
can easily overcome the limitations of RSM [35]. Another 
advantage of the ANN model is its flexibility and the pos-
sibility to add new experimental data to build a reliable 
ANN model. On the contrary, the ANN methodology may 
require a larger number of experiments than RSM [36].

Table 6 shows the results obtained by RSM and ANN 
for the estimation parameters (RMSE, R2 and AAD) of the 
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Fig. 8. Fluoride rejection predicted by the ANN model compared to experimental values.
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TR60 NF270 

NF90 

Fig. 9. Network model with training, validation, testing and prediction set for the three membranes.

Table 6
Comparison of RSM and ANN

Parameters TR60 NF270 NF90

RSM ANN RSM ANN RSM ANN

RMSE 0.0168 0.0002 0.0253 0.0017 0.0033 0.0002
R2 0.95 0.99 0.95 0.99 0.83 0.99
AAD 0.073 0.007 0.192 0.088 0.069 0.005
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three membranes. The scatter plot of the values predicted 
by the RSM and ANN models vs. the experimental values 
for the three tested membranes is shown in Fig. 10.

4. Conclusion

The study was led on NaF-doped groundwater using 
three membranes (TR60, NF270 and NF90), which aim to 
apply two statistical methods RSM and ANN, in order 
to predict the fluoride rejection as a function of the input 
variables (IC and TMP). The following conclusions were 
reached from this work:

• The RSM model indicated the variables IC and TMP 
have a significant effect on fluoride rejection for the 
TR60 and NF270 membranes, while for the NF90 mem-
brane they have a minor effect. In addition, under opti-
mized conditions, fluoride rejection obtained are 79.69%, 
72% and 98.75% for TR60, NF270 and NF90, respectively.

• Both models showed good predictions for three 
membranes with a coefficient of determination that 
exceeded 0.83, 0.99 for RSM and ANN, respectively.

• In terms of comparison based on estimation parame-
ters (RMSE, R2 and AAD), the two models showed good 
predictions for fluoride rejection, while the ANN model 
proved to be more accurate than the RSM model.

• RSM has the advantage of providing a regression equa-
tion for the prediction and showing the effect of exper-
imental factors and their interactions on the response 
compared to ANN.
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