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a b s t r a c t
The quantity and quality of surface waters are affected by climate change. Therefore, the study of the 
impact of climate change on surface water is very important. In the first part of the study, the output 
of the HadGM2-ES model was used to generate a future climatic pattern under two Representative 
Concentration Pathway (RCP) scenarios: RCP2.6 and RCP8.5. The atmospheric circulation data 
from the model were utilized for this purpose. In the second part of the study, the climate model 
Long Ashton Research Station Weather Generator (LARS-WG) was employed to downscale cli-
mate data, including precipitation flow, temperatures, total solids (TS), and electrical conductivity 
(EC) parameters of the Ghezel Ozan River until 2050. In the final section, we evaluated the NARX 
neural network model for simulating the quality and quantity parameters. The results proved that 
the LARS-WG software has an extraordinary ability to downscale and generate synthetic series of 
climatic variables. According to the emission scenarios RCP2.6 and RCP8.5, an increasing trend in 
minimum and maximum temperature was predicted over the future time period. The highest tem-
perature was obtained under the worst situation of RCP8.5. Additionally, the results showed that the 
highest decrease in precipitation is estimated as 15.38% in mid-winter and 18.68% in early spring 
during the future period. With the decrease in precipitation, the river flow is projected to decrease 
by 42.59% in late winter and 76.32% in early spring compared to the observation period. As a result 
of decreased precipitation and discharge, the EC parameter is expected to increase by 52.06% in late 
winter and 81.27% in early spring compared to the base period. Overall, our findings indicate that 
these parameters are strongly influenced by climate change, posing a risk of water shortage and 
drought to the ecosystem of many aquatic organism’s dependent on this river.
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1. Introduction

Today, due to increased population and subsequent 
surges in water demand, the effects of climate change require 
more precise integrated management than ever to meet 
water consumption in various fields such as agriculture, san-
itation, and industry [1,2]. Climate change is a critical factor 
known to impact the environment significantly. The primary 
effects of climate change on water quality and quantity are 
attributed to variations in air temperature and precipitation 
patterns. Changes in the timing, amount, and location of 
rainfall pose threats to ecosystems and wildlife species [3]. 
Furthermore, the projected increase in greenhouse gases and 
the resulting intensification of changes in climatic parame-
ters can have numerous negative effects on various systems, 
including water resources, the environment, industry, health, 
agriculture, and all systems that interact with the climate 
system [4]. With climate change, the hydrological regime of 
rivers and streams may indicate an increased risk of floods 
[5]. The impact of climate change on surface water, particu-
larly rivers, tends to decrease the quality of drinking water, 
leading to increased health risks, especially during extreme 
weather events [6]. Examining trends in hydrological time 
series can be effective in interpreting the relationship between 
processes and environmental changes in the study areas. 
Changes in temperature in rivers and lakes can influence the 
water quality of these resources [7,8]. Given the significance 
of the impact of global warming and climate change on river 
water resources, it is both useful and necessary to investigate 
the behavior of rivers, particularly water levels, in the future 
periods under the influence of these phenomena. This will 
aid in water resource management and provide solutions to 
mitigate the deteriorating effects of climate change [9,10]. 
The 4th Assessment Report of the Intergovernmental Panel 
on Climate Change (IPCC) indicated that air temperature 
has increased by an average of 0.74°C over the past 100 y 
(1906–2007) compared to the average of the previous 30 y 
(1982). According to the 5th report, the temperature increase 
reached 0.85°C [11,12]. Global warming and climate change 
are highly associated with human activities. These issues are 
major environmental problems that have attracted the atten-
tion of many scientists and policymakers around the world 
in recent years [13,14]. The main impacts of climate change 
related to water quality parameters include the alteration of 
surface water levels in rivers and lakes, as well as the values 
of quality parameters (pathogenic microorganisms, physico-
chemical, and biological indicators), leading to an increased 
risk situation in terms of potential health impacts [15,16]. 
Therefore, predicting the qualitative and quantitative param-
eters of water along the river for the purpose of management 
decisions is considered one of the goals of water resource 
managers and planners [17]. In this context, models based on 
differential equations have provided accurate predictions by 
using a data-driven approach to identify the optimal input 
and output mapping [18]. Hydrological modeling to simu-
late the quality of water resources in the present and future 
requires an understanding of global climate models (GCM), 
emission scenarios, and downscaling GCM output reduc-
tion. GCMs produce results at a relatively coarse temporal 
resolution, in many cases too coarse to capture water quality 
dynamics. Therefore, resampling of the data is required to 

generate data at sub-daily temporal resolution [19,20]. Recent 
research has shown that data-driven models provide accu-
rate predictions [19]. However, most of these models cannot 
investigate the nonlinear dynamics inherent in meteorolog-
ical phenomena, so they may not always perform well and 
provide the intended acceptable forecast [21]. To achieve 
these goals, it is inevitable to use Artificial Intelligence (AI) 
and Machine Learning (ML). ML methods have been pro-
posed as an alternative for modeling nonlinear and dynamic 
systems. ML methods have been applied in various research 
fields, such as finance, agriculture, and weather prediction, 
with acceptable accuracy. They can automatically extract 
image features of extreme weather phenomena and predict 
the possibility of extreme weather events using a deep learn-
ing framework [21]. Weather generators have become highly 
useful tools for capturing variability and uncertainty associ-
ated with climate change, particularly in the context of water 
quality [22,23]. Statistical downscaling methods (SDSMs) 
and regional climate models (RCMs) have been applied for 
climate change prediction [22]. The Long Ashton Research 
Station Weather Generator (LARS-WG) falls under the cat-
egory of SDSM. Researchers have examined LARS-WG for 
downscaling climate data, including rainfall, solar radia-
tion, minimum stream flow, crop and sediment yields, and 
maximum temperature [24–27]. In recent decades, the use 
of artificial neural networks (ANNs) has become common 
in many engineering sciences for simulating and predicting 
various phenomena [28–30]. ANNs have also been suc-
cessfully applied in both short-term and long-term predic-
tions [31]. ANNs are techniques with flexible mathematical 
structures that can identify complex nonlinear relationships 
between input and output data [32]. Emamgholizadeh et al. 
[33] utilized ANNs to predict water quality in the Karoon 
River. Gazzaz et al. [34,35] conducted a study in Malaysia 
using water quality predictors and ANNs to model the water 
quality index of the Quinta River. Sulaiman et al. [36] per-
formed a study focused on the classification of water quality 
characteristics. In order to estimate TDS and EC in Abu-Ziriq 
marsh south of Iraq, Al-Mukhtar et al. [37] used the adaptive 
neural fuzzy inference system (ANFIS), ANN, and multiple 
regression (MLR) models. Furthermore, Kadam et al. [38] 
examined the application of ANN and MLR techniques for 
predicting drinking groundwater in the Western Ghat region 
of India. Based on numerous previous studies, the neural net-
work model proves to be a valid and accurate method for 
simulating water quality. Fundamentally, one of the most 
important steps in implementing and meeting the needs of 
integrated water resource management in large watersheds 
is the optimal sharing of surface water [39].

Due to factors such as population growth, industrial 
expansion, climate change, and decreasing precipitation 
in various regions, there has been a decline in the flow of 
river water. Consequently, predicting the impact of climate 
change on surface water is crucial for effective water resource 
management in the future. While existing research demon-
strates the significant influence of climate change on the 
quality and quantity of surface water resources, no studies 
have specifically focused on predicting the effects of climate 
change on the Ghezel Ozan River. The Ghezel Ozan-Safid 
River watershed, covering an area of 5,900 km2, is one of 
the most important aquatic ecosystems in northwest Iran. 
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It profoundly affects the residents of Zanjan, Gilan, Qazvin, 
Kurdistan, East Azerbaijan, Ardabil, Hamedan, and Tehran 
provinces in terms of economy, society, and agriculture. The 
river has experienced severe water resource crises, includ-
ing floods and droughts, in recent years. Hence, projecting 
the changes in surface water resources under future climate 
scenarios plays a crucial role in shaping water resource 
management strategies for this region. The main objectives 
of this study are as follows: (1) To generate future climatic 
patterns under two scenarios, namely RCP2.6 and RCP8.5. 
Meteorological data, including precipitation, minimum and 
maximum temperatures, were measured and recorded at 
the Tarom Synoptic Station over the past 20 y. (2) To employ 
the LARS-WG model for downscaling and validating the 
data. Future meteorological data spanning from 2021 to 2050 
were extracted from the IPCC and DDC for a 30-y period. 
(3) To utilize the NARX neural network model for predict-
ing stream flow, precipitations, EC (electrical conductivity), 
and TS (total solids) of the Ghezel Ozan River by 2050. These 
parameters are vital for assessing water quality in terms of 
drinking and agricultural sectors, respectively, under cli-
mate change conditions. The findings of this research will 
play a significant role in the management and control of 
surface water resources in the region.

2. Material and methods

2.1. Study of area

Tarom city is situated in the northern part of Zanjan prov-
ince and is one of its eight cities. The city spans an area of 
over 2235 km2, located between 48°30’ and 49°14’ longitude 
and 36°38’ and 37°13’ north latitude. Within the city, there are 
22 rivers originating from the surrounding mountains that 
eventually join the Ghazal Ozen River. The catchment area 

of this river measures 49,500 km2. The average annual rain-
fall in Tarom city is 200 mm, with the majority of precipita-
tion occurring during the winter season. The Abhar meteo-
rological observatory station, located in Tarom city, records 
an average minimum temperature of 11.6°C and an average 
maximum temperature of 32.2°C. Furthermore, the annual 
average temperature in the city is 17.5°C, with the absolute 
maximum and minimum temperatures recorded at 48°C 
and –9.5°C, respectively (Fig. 1) [40].

2.2. Data collection

Meteorological data, including daily minimum tempera-
ture (Tmin), daily maximum temperature (Tmax), and daily 
precipitation (P), were obtained from the documents pro-
vided by Tarom Meteorological Organization over a period 
of 20 y. These data were extracted on a daily basis from the 
Tarom Synoptic Station (Table 1). Additionally, EC, TS, and 
discharge data recorded by the Gilvan Hydroclimate Station 
were acquired from the Gilan Regional Water Company for 
the period from 1990 to 2020. The collected data were sub-
sequently normalized and verified using MATLAB software.

2.3. Micro scaling and simulation of observed data

The prediction of future climate variables using global 
climate models (GCM) under different emission scenar-
ios is valuable for understanding the current situation and 
developing strategies to adapt to climate change. Weather 
generators have emerged as powerful tools for capturing the 
variability and uncertainty associated with climate change. 
Among these tools, AOGCM numerical models are consid-
ered the best method for evaluating the impacts of climate 
change [41]. These models simulate physical processes in the 
atmosphere, ocean, cryosphere, and Earth’s surface, enabling 

 
Fig. 1. The Ghezel Ozan River in relation to the provinces and the catchment area [40].

Table 1
Details of stations used in this study

Stations Sampling sites Longitude Latitude Elevations (m above sea level) Riverbed conditions

1 Darram 48° 44’ E 37° 01’ N 397
Non-coarse rubble, 
sand, silt and clay 

2 Kuh Kan-e Sofla 48° 55’ E 36° 53’ N 376
3 Gilvan 49° 08’ E 36° 47’ N 337
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an understanding of how the world’s climate changes due 
to increasing greenhouse gas concentrations. However, 
AOGCM models provide global climate projections and are 
unable to depict regional-scale climate changes. Therefore, 
downscaling techniques are necessary to predict climate 
changes on regional and local scales. One such downscal-
ing method is the Long Ashton Research Station Weather 
Generator (LARS-WG), which is a statistical model [42]. In 
this study, microscaling techniques were employed to trans-
fer climate information from large-scale climate models to 
microscale climate models [43]. Microscale methods like 
LARS-WG are crucial for improving the accuracy of outputs 
derived from GCM models [44]. For our analysis, we uti-
lized the latest version of LARS-WG, namely LARS-WG 6.0. 
This software was used to perform exponential microscaling 
of water quality variables, including temperature and pre-
cipitation changes, under various scenarios for the period 
between 2021–2050. To generate these predictions, we uti-
lized the output of the HadGM2-ES model from the CMIP5 
model series, provided by the MOHC Research Institute. 
The two scenarios considered were RPC2.6 (optimistic) and 
RPC8.5 (pessimistic), as outlined in the 5th Report (AR5) of 
the IPCC [27].

2.4. Validation of data generated in LARS-WG

2.4.1. Data preparation and sorting

In this step, the data obtained from the Meteorological 
Organization was sorted using MATLAB software based on 
the input requirements of the LARS-WG software.

2.4.2. Basic data analysis

In this step, the statistical characteristics of the 
received data (observations) were defined and analyzed.

2.4.3. Primary data generation

In this step, artificial data generation was performed by 
the model for the base period, and the statistical character-
istics of the generated artificial data were determined.

2.4.4. Statistical comparison

The observed and reproduced data were subjected to 
statistical analysis. T-tests, F-tests, and KS (Kolmogorov-
Smirnov) statistical tests were utilized to assess the model’s 
performance during the calibration period. The correspond-
ing p-values for each month are also provided, allowing 
us to infer that there is a significant difference between the 
observed and simulated data based on these results.

2.4.5. Production of daily data in the future

To simulate the future climate conditions of the desired 
location, the model incorporated the RCP2.6 and RCP8.5 
greenhouse gas emission scenarios, along with the out-
put from climate models for the base period. Subsequently, 
reproduction and climate change were simulated using the 
LARS-WG software. The LARS-WG software generated 
projections for minimum and maximum temperatures, as 

well as precipitation in the study area until 2050. Following 
this, the impact of climate change on both the quality and 
quantity of water in the Qezal-Ozen River was examined. 
ANN techniques were employed to simulate and assess the 
effects of climate change on water quality and quantity [45].

2.5. Simulation of desired quantitative and qualitative parameters 
by artificial neural network

In general, the development stages of ANN models can 
be divided into eight stages [12,46]. These steps are:

(1) Data collection: The data for this study was collected 
from the Tarom Meteorological Department and Gilan 
District Water Department. This dataset encompasses 
20 y of maximum and minimum temperatures, precipita-
tion, TS, EC, and runoff data, spanning from 1990 to 2020.

(2) Data pre-processing: In the present study, the input 
data was normalized within a range between zero and 
one. Additionally, the linear interpolation method was 
employed using the nearest neighbors to fill in any miss-
ing data.

In order to ensure homogeneity, several steps were 
taken to address outlier values in the input data used for 
training and testing the NARX model. Firstly, a thorough 
examination of the input data was conducted to identify any 
potential outliers. Subsequently, appropriate methods were 
employed to handle these outliers, such as removing them 
or replacing them with more suitable values. One approach 
utilized involved replacing outlier values with the mean 
of neighboring values, considering the distribution of the 
data. Furthermore, the robustness of the NARX model was 
relied upon to handle small to moderate levels of outliers in 
the input data. This is attributed to the model’s capability to 
capture non-linear relationships between variables and its 
inherent mechanism for noise reduction.

(3) Selection of input variables: A model-based procedure 
was employed in this study, where inputs were selected 
on a case-by-case basis. The selection process was guided 
by prior knowledge of the impacts of temperature, pre-
cipitation, and day of the year on watershed quantity 
and quality.

(4) Data classification: One of the data classification methods 
commonly employed in previous studies is the ad hoc 
method. An example of this method involves allocating 
70% of the data for training, 15% for validation, and 15% 
for testing. In this particular study, the ad hoc method 
was utilized to categorize the data.

(5) Model architecture selection: A nonlinear autoregres-
sive network model with extrinsic inputs (NARX) was 
employed to determine the model architecture. The 
NARX model is extensively utilized in air pollution pre-
diction applications and is capable of capturing various 
nonlinear behaviors [47]. The formula for the NARX 
model can be expressed as a discrete-time recursive 
input-output equation as follows:

y t f y t y t n u t y t n ty y� � � �� � � �� � �� � � �� �� � � � �1 1, , , , , �



S. Mohammadi et al. / Desalination and Water Treatment 304 (2023) 112–128116

where u is the input, y is the output, and ξ is the noise fac-
tor. NARX networks offer several advantages over linear 
models for time series prediction. One key advantage is their 
ability to capture complex nonlinear relationships between 
input and output data, which often leads to more accurate 
predictions. Additionally, NARX networks are known for 
their good generalization to new data points, making them 
useful for predicting future time steps. They are also easy to 
implement using neural network toolboxes like the one in 
MATLAB, and can be designed with flexible architectures 
to suit different types of time series prediction problems.

Given the high efficiency of the NARX architecture in 
predicting time series data, especially in cases involving 
air pollution and nonlinear input-output relationships, we 
implemented the NARX architecture using the neural net-
work toolbox in MATLAB R2019b.

(6) Determining the structure of the model: In this study, the 
selection of the number of layers is based on the architec-
ture of the NARX neural network toolbox in MATLAB 
software. In our model structure, there are three layers 
for inputs, outputs, and hidden nodes. The neurons in 
the input and output layers were automatically deter-
mined using MATLAB software, considering the num-
ber of inputs and outputs. However, the number of 
neurons in the middle layer was selected through a trial 
and error method in this study. By adjusting the weights 
and biases, the neural network can establish an accurate 
mapping between the input neurons and the output. 
ANN training typically follows a supervised approach.

(7) Model training: Before applying ANN models for pre-
diction, it is necessary to train or calibrate the models. 
During training, adjustments are made to the weights 
of each connection between the neurons in the network. 
Additionally, prior to training, the weights and biases of 
the network are typically initialized. The initial weight 
values are randomly selected from a uniform distribu-
tion [48]. In this study, we utilized the Bayesian method 
available in the MATLAB neural network toolbox to 
train the model.

(8) Validation of ANN neural network models: To quan-
tify the performance of ANN models, it is necessary 
to consider various statistical performance indicators. 
Typically, the performance of an ANN model is assessed 

using a quantitative error measure that encompasses 
three significant aspects of validity: repeatable validity, 
predictive validity, and structural validity.

2.6. Artificial neural network implementation

The objective of implementing the neural network in 
this study was to predict the TS, EC, and discharge of the 
Ghazal Ozen River from 2021 to 2050. This prediction was 
based on the available data concerning temperature and 
precipitation, which were generated by the LARS software 
during the specified period. As discussed earlier, the NARX 
architecture provided by the MATLAB Neural Networks 
Toolbox was employed for this investigation (Fig. 2).

Out of the entire dataset, 70% was allocated for train-
ing, while 15% each was assigned for validation and testing 
purposes. The performance of the network was evaluated 
using metrics such as mean squared error and the mean 
of observed and generated regressions. Subsequently, the 
relationships between the main variables obtained from the 
models were examined. The models were developed through 
training artificial neural networks (ANNs). Additionally, 
the impact of the inputs on the outputs was assessed, and 
the model was selected based on evaluation criteria.

3. Results

3.1. Microscale climate change

The findings of the microscale climate change analysis 
indicate a close agreement between the average observed 
and produced precipitation data by LARS software. The 
mean standard deviation of precipitation, calculated over 
several years, aligns in late spring, summer, and late win-
ter (Fig. 3a and b). Additionally, the average minimum and 
maximum temperature data obtained from observations 
and generated by LARS exhibit a high level of consistency 
and similarity. However, the mean standard deviation of 
simulated temperature data, calculated over multiple years, 
is lower than the observed mean standard deviation for all 
months (Fig. 4a and d). Overall, the LARS software demon-
strates moderate performance for temperature simulations 
and good performance for precipitation simulations. The 
statistical model employed by LARS effectively examines 
the disparities between observed and generated data. The 

Fig. 2. Schematic of NARX neural network for predicting TS, EC and Q.
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results of the investigations highlight the exceptional ability 
of the LARS software to generate synthetic series of climatic  
variables.

3.2. Findings of climate change simulation

Microscaling and data validation related to climate 
change were conducted using the LARS-WG software. The 
output data from the site analysis submenu, as well as the 
outputs of the HadGM2-ES model under the RCP2.6 and 
RCP8.5 scenarios, were utilized in the Generator menu to 
estimate the changes in minimum and maximum tempera-
ture and precipitation for the period from 2021 to 2050. 
Figs. 5 and 6 present the estimated atmospheric values (min-
imum and maximum temperature and precipitation) for 
the study area based on the RCP2.6 and RCP8.5 scenarios 
in the LARS software. The results demonstrate an increase 
in both the minimum and maximum temperatures for both 
scenarios by 2050. In Fig. 5a and b, the highest temperature 
increases are associated with the RCP8.5 scenario, with aver-
age temperature rises of at least 4.8°C. The most significant 
temperature increases occur in December (late autumn) 
and January, February, and March (winter) compared to the 
given period. Additionally, the average maximum tempera-
ture shows an increase of 1.28°C compared to the reference 
period (Fig. 5b). Regarding precipitation, the largest average 
increase is observed in all months for the RCP2.6 scenario. 
However, the maximum decreases in mean monthly pre-
cipitation under the RCP2.6 and RCP8.5 scenarios are noted 
in February (mid-winter) and April (early spring), with 
reductions of 15.38% and 18.68%, respectively. In contrast, 
the highest increases in average rainfall occur in December 
(late autumn) and January (early winter), with percentages 
of 29.87% and 29.87% in the RCP2.6 scenario, and 20.43% 

and 25.97% in the RCP8.5 scenario, respectively. Overall, 
mean precipitation increases for most months in both sce-
narios throughout the period, except for February and 
March (late winter) and April (early spring) (Fig. 6).

Figs. 7 and 8 present the regionally generated atmo-
spheric values, including minimum and maximum tempera-
tures and precipitation, based on the RCP2.6 and RCP8.5 
scenarios over a 30-y period from 2021 to 2050. The results 
indicate that both the minimum and maximum tempera-
tures increase by 2050 for both scenarios. In terms of the 
annual mean minimum and maximum temperatures, the 
RCP8.5 scenario exhibits the highest level of warming, with 
an annual mean minimum temperature of 4.6°C. In com-
parison, the RCP2.6 scenario shows a lower warming level 
with an annual mean minimum temperature of 4.9°C during 
the observation period (Fig. 7a). Additionally, Fig. 7b illus-
trates that the annual mean temperature rises by 0.99°C in 
the RCP2.6 scenario and by 1.38°C in the RCP8.5 scenario 
compared to the reference period. Annual precipitation dis-
plays variations throughout the year. The highest average 
annual rainfall is projected to occur in 2023, 2025, 2036, 2043, 
and 2045 (Fig. 8). Moreover, Fig. 8 indicates that the average 
annual precipitation increases by 2.7% in the RCP2.6 sce-
nario and by 2.89% in the RCP8.5 scenario compared to the  
observation period.

3.3. Neural network findings

The NARX neural network was employed in this study. 
The main inputs of the network include minimum tem-
perature, maximum temperature, precipitation, day of the 
year, and a discharge-related input. One of the significant 
advantages of NARX networks is their ability to consider 
the influence of previous inputs and outputs on the current 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Obs-sd 17.686 15.606 26.988 25.774 10.82 4.944 8.947 5.089 4.682 20.05 17.27 19.571
Gen-sd 12.097 20.485 20.247 21.81 18.114 5.75 6.443 4.674 3.673 15.706 21.666 18.41
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Observa�on 23.44 25.44 35.02 44.55 25.16 4.48 6.18 3.45 2.7 20.49 28.76 29.06
Genera�on 23.98 28.58 32.1 45.39 25.49 5.4 3.89 3.18 2.81 16.71 32.04 27.89
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(b)

Fig. 3. Evaluation of (a) mean standard deviation (b) and observed simulated monthly precipitation in LARS-WG.
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output. To account for the daily effects of the previous 
day’s discharge on the current discharge, 20 samples were 
selected. The mean squared error results generated by the 
network are presented in Fig. 9a, our findings indicate that 
the best validation result, with a value of 1.358 × 10–6, was 
achieved during the fifty-fourth iteration of the network 
using MATLAB software. At this stage, the training error 
stood at 715.2 × 10–6, the validation error at 1.358 × 10–6, and 
the test error at 5.698 × 10–6. Fig. 9b, illustrates the flowchart 

depicting the relationship between time and mean squared 
error. The accuracy of the network increases as the training 
production data aligns with the observation data. Therefore, 
the mean squared error of the output should approach zero. 
In our designed network, an acceptable value of 1.358 × 10–6 
was attained, indicating a close match between the pre-
dicted data and the observed data. Additionally, Fig. 9c, 
presents a regression plot, demonstrating a correlation 
coefficient of 0.9999 during the training and testing phases. 
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(b)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Obs-sd 2.594 2.691 2.979 2.49 2.523 2.842 2.649 2.172 1.167 1.963 2.059 2.571
Gen-sd 0.963 1.023 1 1.078 0.968 0.709 0.698 0.628 0.735 0.754 0.938 0.987
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SD-T max monthly mean(c)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observa�on 10.64 12.55 18 21.94 28.73 33.47 34.87 34.93 31.24 24.85 16.5 11.81
Genera�on 10.3 12.96 17.75 22.48 28.41 33.01 34.75 34.64 31.11 25.3 16.44 11.55
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Fig. 4. Evaluation of (a,c) mean standard deviation (b,d) and observed simulated monthly minimum and maximum temperature 
in LARS-WG.
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This high correlation signifies a strong agreement between 
the data predicted by the network and the observed data.

After completing the training and testing phases and 
validating the accuracy of the designed neural network, 
the data was inputted into the neural network to predict 
the discharge for the 30-y period from 2021 to 2050. The 
annual and monthly average discharges were calculated 
for the RCP2.6 and RCP8.5 scenarios and are presented 
in Figs. 10 and 11. Fig. 8 displays the simulated discharge 
flow rate in the studied basin under the RCP2.6 and RCP8.5 
scenarios from 2021 to 2050, allowing for comparison with 
observations. It was observed that runoff is projected to 
decrease by 2050 in both scenarios when compared to the 

observed data. The largest decreases in the average monthly 
discharge occurred in March (late winter), April, and May 
(early spring), with reductions of 42.59%, 76.32%, and 
78.14%, respectively (Fig. 10). Additionally, in both scenar-
ios, the overall amount of discharge displayed lower values 
compared to the observed data. The largest decrease in the 
average annual discharge was estimated to be 20 m3/s in 
2048 as an annual average. According to Fig. 11, the flow 
experienced a yearly reduction of 49.51% and 50.31% in the 
RCP2.6 and RCP8.5 scenarios, respectively, in comparison 
to the observation period. In general, the average monthly 
discharge values decreased during late spring, summer, and 
early autumn in the study basin, as shown in Fig. 12.

  

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Historical() -5.532 -7.184 -1.282 6.1908 13.899 19.367 21.059 20.13 18.07 12.209 5.1542 -1.811
RCP2.6 (2021-2050) 2.7432 4.5728 7.9822 11.975 16.285 20.29 22.494 22.83 19.632 14.916 9.1183 4.9239
RCP8.5(2021-2050) 2.8763 4.7068 8.1644 12.212 16.553 20.631 22.985 23.328 19.998 15.206 9.4061 5.1354
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Fig. 5. Monthly maximum (a) and minimum (b) temperature changes under two RCPs scenarios.

Fig. 6. Monthly mean precipitation changes under two RCPs scenario.
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Fig. 13 illustrates the progression of errors during the 
training, validation, and testing stages. After eleven itera-
tions using MATLAB software, the network achieved the best 
result with a value of 2,297.3 × 10–7. At this stage, the training 
error was 4,341.7 × 10–7, the validation error was 2,297.3 × 10–7, 
and the test error was 6,371.2 × 10–6. Additionally, Fig. 13a 
depicts the temporal variation of EC and the mean squared 
error. Another crucial aspect in assessing network accuracy 
is the regression between the targeted and trained outputs, 
which can be observed in Fig. 13b. Furthermore, Fig. 13c 
displays the correlation between the neural network’s pre-
dicted EC outputs. The correlation coefficient for all the data 
points was calculated as 0.9999, indicating a strong agree-
ment between the data predicted by the neural network 
and the target data.

After completing the training and testing phases and val-
idating the accuracy of the developed neural network, data 
for the period from 2021 to 2050 were inputted into the neu-
ral network to predict the levels of the EC index over this 
30-y timeframe. The annual and monthly averages of the 
EC outputs were determined and presented in Figs. 14–16, 
for the RCP2.6 and RCP8.5 scenarios. It was observed that 
the monthly mean EC concentration increases in both sce-
narios up until 2050 when compared to the observed data. 
Specifically, the highest average monthly EC concentrations 
were recorded as 52.06%, 81.27%, and 53.23% in March 
(late winter), April, and May (early spring), respectively. 
Conversely, the lowest average monthly EC concentrations 
were observed during the summer season, as shown in Fig. 
14. Furthermore, in both scenarios, the average monthly 
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concentration of EC for all months of the year exhibits higher 
values when compared to the observed data (Fig. 15). The 
month of May stands out with the highest average monthly 
EC concentration, reaching 3,600 µS/cm. Moreover, the 
highest average annual EC concentration was projected to 
occur in 2048 and 2028, with concentrations of 3,628 and 
3,599 µS/cm, respectively. When considering the annual 
mean concentrations of EC under the RCP2.6 and RCP8.5 

scenarios, they increased by 24.7% and 25.1%, respectively, 
in comparison to the observation period (Fig. 16).

The neural network used for predicting total solid (TS) 
incorporates several inputs such as minimum temperature, 
maximum precipitation, temperature, and day of the year. 
The hidden layer of the neural network consists of three 
neurons, which were selected through a trial and error 
process based on minimizing the mean square error.

Fig. 9. (a) Mean squared error for training and test data, (b) discharge time-series and the mean squared error and (c) regression 
diagram between the target output and the output of the model.
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Fig. 10. Chart about the annual average of discharge (Q).



S. Mohammadi et al. / Desalination and Water Treatment 304 (2023) 112–128122

 

0

20

40

60

jan feb mar apr may jun jul aug sep oct nov dec

Q monthly average(m3/s)

Q_2.6 Q_8.5

Fig. 11. Chart about the annual average of Q under RCPs scenarios.

 

jan feb mar apr may jun jul aug sep oct nov dec
Q_H 33.3294 48.5935 96.8531 171.714 108.27 18.5678 3.74625 1.7388 1.85426 5.83435 18.5249 27.7585
Q_2.6 34.2235 55.9093 55.7897 40.7856 23.7785 9.97867 3.95554 1.52386 1.55807 7.59291 16.294 29.3577
Q_8.5 33.4294 55.4453 55.4005 40.5167 23.5511 9.7021 3.45246 1.46957 1.51814 7.17866 15.7261 28.5414
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Fig. 12. Chart about monthly average Q under RCPs scenarios.

 
Fig. 13. (a) A network training in EC prediction, (b) time series of observed and predicted EC in the test stage and mean square 
error and (c) regression diagram between the target and model outputs.
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To account for the daily effects of past discharge on 
the current TS, 20 samples were chosen. Fig. 17a illus-
trates the decrease in errors during the training, valida-
tion, and testing stages. It is evident that the best results 
were achieved after 67 iterations, with a training error 
of 7,735.6 × 10–7, a validation error of 3.0417 × 10–7, and a 

test error of 6.9507 × 10–8. Fig. 17b displays the time plot 
of TS and the mean squared error. Furthermore, Fig. 17c 
demonstrates the regression between the neural network’s 
output and the target data. The correlation for the entire 
dataset was found to be 0.99994, indicating a strong agree-
ment between the predicted data from the neural network 
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Fig. 16. Monthly changes of EC for two scenarios of RCP at the beginning and end of the given period.
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and the observed data. The image shows a suitable linear 
relationship between the data points, indicating the high 
accuracy of the neural network in predicting TS.

According to the data collected for the studied basin, 
Fig. 18 displays the simulated TS amounts for the period 
2021–2050 based on the RCP2.6 and RCP8.5 scenarios pre-
dicted by neural network systems. The highest annual 
average TS concentration was estimated to occur in 2038, 
reaching 10,000 ppm. On both RCP2.6 and RCP8.5 scenarios, 
the annual average TS concentration decreased by 45.12% 
and 45.04%, respectively (Fig. 19). Analyzing the data pre-
sented in Fig. 18, it is observed that the monthly average TS 
concentration until 2050 exhibits fluctuations in both sce-
narios. In comparison to the observed period, the monthly 
average TS concentration shows a decrease in March (late 
winter), April, and May (early spring). Among them, the 
most significant decrease occurs in April with a 90% reduc-
tion. In contrast, during January and February (early winter) 

and June and July (early summer), the monthly average 
TS concentration increases compared to the observation  
period (Fig. 20).

4. Discussion

In this section, we discuss the impacts of climate change 
on the quantity and quality of surface water, as simulated 
by a machine learning model. The results indicate that there 
will be incremental changes in seasonal and annual average 
temperatures under both the RCP2.6 and RCP8.5 climate 
emission scenarios during the future period (2021–2050). 
Moreover, the temperature increases projected under the 
RCP8.5 scenario are higher than those under the RCP2.6 
scenario. According to the climate scenarios, the maximum 
temperature increase is expected to occur from late autumn 
to mid-winter, with the highest annual average temperature 
increase projected for 2048–2049. Reddy et al. [49] assessed 

 
Fig. 17. (a) Mean squared error of training and test data for TS, (b) time series and mean squared error, and (c) regression plot 
between target and model outputs.
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Fig. 18. Chart about the annual average of TS under RCPs scenarios.
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the potential effects of climate change using the LARS-WG 
model in Andhra Pradesh, a region of India. They found 
that the model estimated a 1%–1.53% increase in maximum 
temperature and a 2.5% increase in minimum tempera-
ture for the year 2030. For the year 2060, the model pro-
jected a 3.7%–10.2% increase in minimum temperature. The 
LARS-WG model demonstrated high efficiency and perfor-
mance across all selected areas [49]. Chen et al. conducted a 
study to assess the effectiveness of the LARS-WG model in 
downscaling critical variables like daily precipitation, daily 
maximum temperature (Tmax), and daily minimum tempera-
ture (Tmin) in Sudan and South Sudan. They found that while 
rainfall has been decreasing in Sudan, it has been increasing 
in South Sudan. The model predicted an increasing trend for 
both minimum and maximum temperatures in the specified 
area [50]. In the current study, the projected levels of pre-
cipitation based on the RCP2.6 and RCP8.5 scenarios indi-
cate that there will be increases and decreases in different 
seasons. Specifically, compared to the observed period, the 
mean monthly precipitation in February (midwinter) and 

April (spring) is estimated to increase by 15.38% and 18.68%, 
respectively, under the RCP2.6 and RCP8.5 scenarios. The 
highest annual average rainfall is predicted to occur in 2023, 
2025, 2036, 2043, and 2045 within the next 30 y. Additionally, 
when comparing the flow data with the observational data, 
they found consistency with the changes in temperature and 
precipitation. Concerning seasonal changes, the amount of 
flow decreased significantly under both scenarios. At the end 
of winter, there was a decrease of 42.59%, and at the begin-
ning of spring, there was a decrease of 77.23%. These findings 
align perfectly with the predicted decrease in rainfall during 
the same periods. The most substantial decline in the aver-
age annual flow was projected to occur in 2048. Comparing 
to the observed period, the RCP2.6 and RCP8.5 scenarios 
resulted in a decrease of 49.51% and 50.31% in the annual 
average flow, respectively. Our results are consistent with 
those reported by Reddy and Chen et al., who also employed 
the LARS-WG model to investigate the impact of climate 
change on river runoff. Furthermore, these studies estimated 
daily precipitation as well as daily maximum (Tmax) and 
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Fig. 19. Chart about the monthly average of TS under RCPs scenarios.
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Fig. 20. Monthly changes of TS in the past and future under two scenarios of RCPs.
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minimum (Tmin) temperatures [49,50]. In a study conducted 
by Petpongpan et al. [51], the impacts of climate change on 
the levels of surface and groundwater in two river basins, 
namely Yom and Nan, were assessed. The study’s findings 
revealed that the average annual temperature was approxi-
mately 0.5°C–0.6°C lower than the lowest estimated tempera-
ture (under the RCP 2.6 scenario) and 0.9°C–1.0°C lower than 
the highest estimated temperature (under the RCP 8.5 sce-
nario). Additionally, annual precipitation increased within 
the range of 20–200 mm/y under both scenarios. The total 
volume of water derived from surface and groundwater 
sources in the Yom river basin is projected to decrease under 
both scenarios. Specifically, there is an estimated decrease 
of 443.98 million·m3/y under the RCP 2.6 scenario and a 
decrease of 316.77 million·m3/y under the RCP 8.5 scenario.

Silberstein et al. [52] conducted a study investigating the 
relationship between climate change indicators and stream 
flow possibilities in southwestern Australia. According to 
their findings, under normal and dry weather conditions, 
there was a decrease in precipitation and discharge com-
pared to the historical period, with reductions of 10% and 
16%, as well as 30% and 53%, respectively. Their study also 
examined the simulated TS parameter for the study basin. 
The results indicated that the average monthly concentra-
tion of TS is increasing or decreasing in certain seasons until 
2050. Specifically, during late winter and early spring, the 
average monthly concentration of TS decreased compared 
to the observed period. This reduction in the TS parameter 
aligns with the outcomes of their study, as it corresponds to 
the decrease in precipitation and discharge during those sea-
sons. Additionally, the simulated EC parameter exhibited an 
increase in the monthly mean EC concentration up to 2050 
in both scenarios when compared to the observed data. The 
greatest increase in EC concentration was associated with 
the RCP8.5 scenario in comparison to the observed period. 
In terms of seasonal changes, the highest average monthly 
concentration of EC is anticipated to occur with a 52.06% 
increase in late winter and a 27.81% increase in early spring 
compared to the observational data. These increases in the 
EC parameter are consistent with the findings of the study, 
considering the decrease in rainfall and discharge during late 
winter and early spring. Ghazi et al. [53] conducted a study 
using various statistical and soft-computing tools to com-
pare predicted groundwater levels under different models, 
including Shared Socioeconomic Pathways (SSPs) SSP1-2.6, 
SSP2-4.5, and SSP5-8.5 from the Coupled Model Inter com-
parison Project Phase 6 (CMIP6). The study focused on Tasuj 
Plain in Iran, and the predictions were made for a short-term 
period spanning 2022–2027. The results indicated that the 
groundwater level in Taji Plain is projected to decrease by 
3.12, 3.96, and 4.79 m based on the estimations provided by 
the SSP1-2.6, SSP2-4.5, and SSP5-8.5 models, respectively. 
Li et al. [54] conducted a study to estimate the impacts of 
climate change on the discharge of the Yarlung River. The 
findings revealed that the temperature increased by 3.8°C, 
while the annual average precipitation decreased by 5.8% 
across eight study areas. Ghazi and Jeihouni [55] investi-
gated the variability of precipitation and temperature in 
the city of Tabriz, located in northwestern Iran, using data 
from reports by the Intergovernmental Panel on Climate 
Change (IPCC) spanning the period from 2015 to 2100. The 

results indicated that temperature is expected to rise in all 
months and scenarios. Average temperatures are projected 
to increase from 12.61°C during the base period to 13.52°C, 
14.33°C, and 14.91°C under the RCP2.6, RCP4.5, and RCP8.5 
scenarios, respectively. When comparing the scenarios, the 
predicted temperature increases were different: 15.42°C 
for the SSP1-2.6 scenario, 16.16°C for the SSP2-4.5 scenario, 
and 17.53°C for the SSP5-8.5 scenario. According to previ-
ous studies, a 11% change in rainfall primarily results in a 
11%–21% change in river flows. Additionally, a temperature 
increases of 2°C leads to a reduction in flow ranging from 
1% to 12%. Therefore, our country is not exempt from the 
impacts of climate change, and it is crucial to closely consider 
this phenomenon and its detrimental effects when plan-
ning for future adaptive measures. The results of the studies 
indicate that climate change will have severe and irrevers-
ible consequences, including decreased discharge, TS, and 
increased EC in the Qezal Ozen watershed in the upcoming 
periods. Consequently, all aspects of climate change impacts 
must be thoroughly examined to find an optimal and sustain-
able approach to water resource management in the basin. 
The present research has demonstrated that the utilization 
of the NARX neural network is a highly effective and reli-
able method for predicting surface water quality character-
istics. Our findings align with those of Cai et al. [56] who 
also emphasized the suitability of advanced machine learn-
ing algorithms in constructing appropriate model frame-
works. Furthermore, the integration of data-driven models 
with regional watershed properties has proven successful. 
Additionally, the results of Sanikhani et al. [24] indicated that 
the LARS-WG downscaled climatic variables effectively, and 
the application of machine learning models can yield reliable 
results when predicting water quality indices. Many studies 
have demonstrated that the application of machine learning 
models can yield reliable results when predicting water qual-
ity indices. Additionally, numerous research findings have 
highlighted the significant potential of machine learning 
algorithms in simulation and prediction [57–59].

5. Conclusion

The present study employed the NARX neural network 
to simulate precipitation, temperature, TS, and electrical con-
ductivity (EC) parameters in the Ghezel Ozan River over a 
30-y period (2021–2050) in Tarom City, Northwest Iran. The 
impact of climate change on these parameters was estimated 
using the HadGM2-ES models from General Circulation 
Models (GCM). The output models of HadGM2-ES for atmo-
spheric variations were used to predict future climatic pat-
terns (2050) under two scenarios: RCP2.6 and RCP8.5. Based 
on both scenarios, an increase in both minimum and maxi-
mum temperatures was observed until 2050, with the max-
imum temperature exhibiting a more significant rise under 
the critical RCP8.5 scenario. There were variations in rainfall 
changes between the RCP2.6 and RCP8.5 scenarios across dif-
ferent seasons. The highest decrease in precipitation was esti-
mated to occur during mid-winter (15.38%) and early spring 
(18.68%) in the next period. The results obtained showed 
a chain of interconnected effects. As rainfall decreases, the 
river flow in late winter and early spring experiences sig-
nificant reductions of 42.59% and 76.32%, respectively. The 
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relationship between precipitation, discharge, and the elec-
trical conductivity (EC) parameter leads to an increase in 
the EC parameter by 52.06% and 81.27% during the late 
winter and early spring compared to the observed period. 
Overall, our findings indicate that both qualitative and quan-
titative water parameters are strongly influenced by climate 
change. Furthermore, the present study has demonstrated 
that the use of the NARX neural network is a highly effec-
tive and reliable method for predicting the characteristics 
of surface water quality.

Limitation of this study: This research did not include 
an extension to global climate models (GCMs), emission 
scenarios, or downscaling GCM output. Additionally, res-
ampling of the data to generate sub-daily time resolution 
data was not conducted.
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