

## Mesoporosity development in zeolite beta by using desilication and CTAB assembly for removal of Mn<sup>2+</sup>

Seo-Hyun Pak<sup>a</sup>, Chan-Gyu Park<sup>a,\*</sup>, Gwang Nam Kang<sup>b</sup>, Young-hee Kim<sup>c,d</sup>

<sup>a</sup>Environmental Technology Division, Korea Testing Laboratory, 87, Digital-ro 26-gil, Guro-gu, Seoul 08389, Korea, Tel. +82 2-860-1105, +82 2-860-1139; Fax: +82-02-860-1689; emails: pcg6189@hotmail.com, seohyupak@ktl.re.kr (S.-H. Pak), Tel. +82 2-860-1272; Fax: +82 2-860-1689; email: pcg6189@hotmail.com (C.-G. Park)

<sup>b</sup>ATE Corp., 551-24, Yangcheon-ro, Gangseo-gu, Seoul, South Korea

<sup>c</sup>ILSHIN Environmental Engineering Co., Ltd., A-1111, Munjeong Hyundai Knowledge Industry Center, #11, Beobwon-ro 11-gil, Sonpa-gu, Seoul 05836, Korea

<sup>d</sup>Hoseo Graduate School of Venture, Banpo-daero 9-gil, Seocho-gu, Seoul 06711, Korea

Received 25 October 2017; Accepted 26 June 2018

---

### ABSTRACT

Mesoporous zeolite beta (Si/Al = 25) was synthesized in an aqueous 2–7 M NaOH solution and cetyltrimethylammonium bromide (CTAB) (0.18 M) solution to form mesopores via the extraction of framework silicon and surfactant assembly. The physicochemical properties of the mesoporous zeolites beta were then analyzed using X-ray diffraction, nitrogen full isotherms at 77 K, scanning electron microscopy, transmission electron microscopy, <sup>29</sup>Si-nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The commercial zeolite beta, –Si–O–Al–, and –Si–O–Si– linkages were broken due to the NaOH process. Micelles formed by CTAB then lead to the formation of mesoporosity with zeolite beta character. This material, which introduces mesoporosity into zeolite beta, displayed a superior adsorption capacity than commercial materials when used as an adsorbent for manganese removal.

**Keywords:** Mesoporosity; Desilication; CTAB; Zeolite; Zeolite beta; Water treatment; Manganese

---

\* Corresponding author.