Quarries environmental footprint in the framework of sustainable development: the case study of Milos Island

Grammati Goudouva a, Pantelitsa Loizia b,c, Vasilis Inglezakis d, Antonis A. Zorpas b, *

a Forest Department Cyclades, Forester, Management and Protection of Environment, P.O. Box 84801, Milos, Cyclades, Greece
b Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Environmental Conservation and Management, Open University of Cyprus, Giannou Kranidioti 33, Latsia, 2220, Nicosia, Cyprus, emails: antonis.zorpas@ouc.ac.cy, antoniszorpas@yahoo.com (A.A. Zorpas)
c Department of Research – Development, Institute of Environmental Technology and Sustainable Development, ENVITECH (Environmental Technology) Ltd, P.O. Box 34073, 5309, Paralimni, Cyprus
d Chemical Engineering Department, School of Engineering, Nazarbayev University, 53 Kabanbay batyr ave., Astana, Kazakhstan

Received 20 June 2018; Accepted 10 September 2018

ABSTRACT

The installation and operation of a quarry contains complex, difficult, and sometimes unsafe processes (such as explosive) that may affect public health as well as the whole environment and the sustainable development in general in the area which guest the quarry. This paper focuses on the Environmental Footprint from quarries activities located in the island of Milos (Greece), where bentonite, perlite, and pozzolan (type 1 and 2) are mined and extracted. Results indicated that energy consumption is considered to be higher for bentonite than perlite, while pozzolan presented with limited consumption per ton of product. More specific for the production of bentonite 1.81 L/t of oil is needed, 6.15 kWh electricity as well as 7.21 kg of production needs 1 m² area. Regarding the production of perlite 2.86 L/t of oil is needed, 16.38 kWh electricity, while 7.43 kg required 1 m² production areas. Pozzolan type 1 consumed 0.71 L/t of oil, 0.87 kWh electricity, and 0.01 kg explosives and 2 m² of production area are needed, while for the production of pozzolan type 2, 0.87 L/t of oil, 0.76 kWh electricity are needed as well as an area of 10 m² is required. Concerning the waste generation (which mainly includes rock materials) is 0.83 m³/t for bentonite, 0.39 m³/t for perlite, while in the case of pozzolan 1 and 2 are zero due to the fact that both materials are homogenized. Gaseous emissions were calculated as equivalence of CO₂ and for the bentonite presented 1.52%, for perlite was 2.18% per production ton of final product.

Keywords: Quarries; Environmental footprint; Greenhouses gas emissions; Ecological footprint; Carbon footprint; Mining activities

* Corresponding author.