Poly(acrylic acid)/SiO\textsubscript{2} composite nanofiber functionalized with mercapto groups for the removal of humic acid from aqueous solution

M.A. Zulfikara,*, D. Maulinaa, M. Nasirb, A. Alnic, M. Zunitad, I.S. Zene, H. Setiyantoa, H. Ruslia

aAnalytical Chemistry Research Group, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, Indonesia 40132, Tel. +62-22-2502103, email: zulfikar@chem.itb.ac.id (M.A. Zulfikar), dy.maulinayunus@gmail.com (D. Maulina), henry@chem.itb.ac.id (H. Setiyanto), handajaya@chem.itb.ac.id (H. Rusli)

bClean Technology Division, Indonesian Institute of Sciences, Jl. Cisitu Lama 1 Bandung, Indonesia 40132, email: mnasir71@yahoo.com (M. Nasir)

cOrganic Chemistry Research Group, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, Indonesia 40132, email: alni@chem.itb.ac.id (A. Alni)

dChemical Engineering Product Design and Development Research Group, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, Indonesia 40132, email: m.zunita@che.itb.ac.id (M. Zunita)

eDepartment of Urban and Regional Planning, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Malaysia 81310, email: irinasafitri@utm.my (I.S. Zen)

Received 30 April 2018; Accepted 19 October 2018

A B S T R A C T

Functionalized poly(acrylic acid)/SiO\textsubscript{2} (PAA/SiO\textsubscript{2}) composite nanofiber with mercapto groups have been prepared through an electro spinning process. The characterization of the composite nanofiber was performed using FTIR, optical microscopy, SEM, TEM and Brunauer-Emmett-Teller (BET) analysis. Finally, the prepared nanofiber was used for the adsorption of humic acid (HA) from an aqueous solution using a batch adsorption technique. The effects of pH, contact time, initial concentration, dosages and temperature on adsorption capacities were studied in a batch mode. The experimental data was well described by the Langmuir isotherm model with an adsorption capacity of 427.62 mg/g. It was found that the kinetic data follow the pseudo-second-order models. The data of thermodynamic parameters indicated that the HA adsorption process was non-spontaneous and endothermic under the experimental conditions with the values of Gibbs free energy (ΔG°) being in the range of 3.235 to 5.914 kJ mol-1; as well as the values of enthalpy (ΔH°) and entropy (ΔS°) that were found to be 22.41 kJ mol-1 and 55.59 J mol-1 K-1, respectively. The functionalized composite nanofiber exhibited as a high potential adsorbent for the adsorption of HA from an aqueous solution.

Keywords: Adsorption; Composite nanofiber; Humic acid; Mercapto groups

*Corresponding author.