

Combination of electrolysis and microalgae cultivation for beneficial reuse of fertilizer wastewater from poultry manure anaerobic digestion effluent

Xinfeng Wang^{a,b}, Lu Lin^c, Li Zhang^a, Raquel de Souza^a, Haifeng Lu^{a,*}, Zhidan Liu^a, Na Duan^a, Taili Dong^d, Yuanhui Zhang^e, Baoming Li^{a,*}

^aLaboratory of Environment-Enhancing Energy (E2E), Beijing Engineering Research Center for Animal Healthy Environment, Key Laboratory of Agriculture Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China, emails: hfcauedu@163.com (H. Lu), libm@cau.edu.cn (B. Li), xinfengw@cau.edu.cn (X. Wang), shuliyouzhu@163.com (L. Zhang), lamartin_rachel@hotmail.com (R. de Souza), zdliu@cau.edu.cn (Z. Liu), duanna@cau.edu.cn (N. Duan)

^bCollege of Resources and Environmental Sciences, National Academy of Agriculture Green Development, School of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China

^cDepartment of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA, email: lulin@nmsu.edu

^dShandong Minhe Biotech Limited Company, Yantai 265600, China, email: dongtaili@126.com

^eDepartment of Agricultural and Biological Engineering University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, email: yzhang1@illinois.edu

Received 21 February 2019; Accepted 12 October 2019

ABSTRACT

Poultry manure anaerobic digestion effluent (PMADE) contained a high content of ammonia nitrogen ($\text{NH}_4^+ \text{-N}$), which should be treated properly before discharge. However, the mechanism of electrolysis in treating high $\text{NH}_4^+ \text{-N}$ (over 1,500 mg L⁻¹) wastewater has never been studied. In this study, fertilizer wastewater from PMADE with high content of $\text{NH}_4^+ \text{-N}$ (over 3,000 mg L⁻¹) and low carbon/nitrogen (C/N) ratio was treated via electrolysis and microalgae. Results showed the highest removal of $\text{NH}_4^+ \text{-N}$, total organic carbon (TOC) and inorganic carbon (IC) in electrolysis were 47%, 76%, and 93%, respectively. Quadratic functions are suitable to simulate $\text{NH}_4^+ \text{-N}$ removal of FW (coefficient is over 0.95). The removal efficiency of $\text{NH}_4^+ \text{-N}$ was 10%–65% during microalgae cultivation. The removal of $\text{NH}_4^+ \text{-N}$, total phosphorus (TP), IC, and TOC in fertilizer wastewater by the combination of electrolysis and microalgae cultivation achieved 96%, 63%, 95%, and 52%, respectively. *Chlorella* sp. used 3.11% carbon, 15.0% nitrogen, and 13.5% phosphorus in the FW as substrates. This study provided an alternative approach to treat and reuse high-ammonia containing wastewater.

Keywords: Electrochemical oxidation; Fertilizer wastewater; Microalgae; Ammonia nitrogen

* Corresponding author.