On the electrocatalytic reduction of CO_2 using Cu-nanoparticles decorating Au electrode

Ibrahim Hotan Alsohaimi^{a,*}, Mohamed I. Awad^{b,c,*}, Mutairah Shaker Alshammari^a, Mohammed A. Kassem^{b,d}

^aChemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia, emails: ehalshaimi@ju.edu.sa (I.H. Alsohaimi), msshamari@ju.edu.sa (M.S. Alshammari) ^bChemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia, emails: mawad70@yahoo.com (M.I. Awad), maa_kassem@hotmail.com (M.A. Kassem) ^cChemistry Department, Faculty of Science, Cairo University, Gizah, Egypt ^dChemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt

Received 4 September 2019; Accepted 19 December 2019

ABSTRACT

 CO_2 is electrocatalytically reduced in aqueous solutions (NaHCO₃ and Na₂SO₄) at polycrystalline gold (Au) both bare and modified with copper nanoparticles (nano-Cu) (nano-Cu/Au). Copper nanoparticles were deposited by the cycling of potential in the range (-0.2–0.7 V) for various potential cycles. The effect of the electrolyte, as well as the nano-Cu loading on the electroreduction of CO_2 , has been investigated. Nano-Cu/Au electrode has been voltammetrically and morphologically characterized. It has been found that the type of electrolyte, that is, NaHCO₃ and Na₂SO₄, is critical in the electrochemical reduction of CO_2 ; for instance, the CO_2 reduction is obscured by hydrogen evolution in NaHCO₃ solutions (pH 9.2) at both electrodes, that is, bare Au and nano-Cu/Au electrodes, the well-defined redox peak is obtained at both electrodes in Na₂SO₄ solution (pH 7), even though the pH of Na₂SO₄ is smaller. The extent of catalysis is based on the copper loading at the nano-Cu/Au electrode as well.

Keywords: CO2 electroreduction; Electrocatalysis; Copper nanoparticles; pH

* Corresponding authors.

1944-3994/1944-3986 $\ensuremath{\mathbb{C}}$ 2020 Desalination Publications. All rights reserved.