Adsorption of selenium (Se⁴⁺) ions pollution by pure rutile titanium dioxide nanosheets electrochemically synthesized

Ahmed Mahdi Rheima^a, Mahdi A. Mohammed^{b,*}, Shaimaa Hamed Jaber^c, Shahad Abbas Hameed^a

^aDepartment of Chemistry, College of Science, Wasit University, Alkut, Iraq, emails: arahema@uowasit.edu.iq (A.M. Rheima), shad.sa190@gmail.com (S.A. Hameed)

^bDepartment of Physics, College of Science, Wasit University, AlKut, Iraq, email: mahmed@uowasit.edu.iq (M.A. Mohammed) ^cDepartment of Chemistry, College of Science, University of Mustansiriyah, Baghdad, Iraq, email: shaemaahamed800@uomustansiriyah.edu.iq (S.H. Jaber)

Received 18 October 2019; Accepted 17 March 2020

ABSTRACT

In this work, pure rutile titanium dioxide (TiO₂) nanosheets are synthesized by the electrochemical deposition method using a rectangular titanium plate (4 cm × 2 cm × 0.1 cm) as both cathode and anode with a current density of 9.2×10^{-3} mA/cm² for 3 h. The rutile TiO₂ nanosheets are investigated by both scanning electron microscopy and transmission electron microscopy measurements, and their crystal structure is obtained using the X-ray diffraction technique. The Brunauer–Emmett–Teller analysis was shown the surface area of the rutile phase was 52 m²/g. The electrochemical synthesized rutile TiO₂ nanosheets behave as an attractive adsorbent for Se⁴⁺ ions from their aqueous solutions. We examined the impact of contact time, pH, adsorbent mass, temperature and initial concentration of Se⁴⁺ ions. The Se⁴⁺ ions isotherm adsorption showed a good fit with Freundlich isotherm and Langmuir models. The thermodynamic study was done to calculate the ΔS , ΔH and ΔG parameters, which obtained 7.39 kJ/mol, 39.32 J/mol K, and -4.32 kJ/mol, respectively. Moreover, the kinetic study showed the adsorption behaved as pseudo-second-order.

Keywords: Titanium dioxide; TiO₂; Rutile phase; Adsorption; Selenium; Electrochemical method

* Corresponding author.

1944-3994/1944-3986 \odot 2020 Desalination Publications. All rights reserved.