Life-cycle cost analysis of adsorption cycles for desalination

Kyaw Thua, A. Chakrabortyb, B.B. Sahaa, Won Gee Chunc, K.C. Nga,*

aDepartment of Mechanical Engineering, NUS, 9 Engineering Drive 1, Singapore 117576
Tel. +65-65162214, Fax +65 -67791459; e-mail: mpengkc@nus.edu.sg
bMAE Dept., NTU, Singapore
cDepartment of Nuclear and Energy Engineering, 66 Jejudaehakno, Jejusi, Cheju National University, Korea

Received 21 April 2009; Accepted in revised form 28 January 2010

\section*{ABSTRACT}

This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO\textsubscript{2} emission per m3 generated, typically 85\% less, by comparison to an RO process.

\textit{Keywords}: Economic analysis; Adsorption; Desalination; CO\textsubscript{2} emission saving

* Corresponding author.