Cyanopropyl-functionalized nanosilica based dispersive micro-solid phase extraction method for rapid removal of organophosphorus pesticides from water samples

Zahra Sotoudehnia Korrani a, Abdolhamid Alizadeh b,⁎, Wan Aini Wan Ibrahim a,c,⁎, Gaurav Sharma d,⁎

aMedical Education Development Center, Sirjan School of Medical Sciences, Sirjan, Iran, email: zahrasetoudehnia@yahoo.com (Z.S. Korrani)
bDepartment of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 6714967346 Iran, email: ahalizadeh2@hotmail.com (A. Alizadeh)
cCenter for Sustainable Nanomaterials, Ibn Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia, email: wanaini@kimia.fs.utm.my (W.A.W. Ibrahim)
dSchool of Chemistry, Shoolini University, Solan – 173212, Himachal Pradesh, India, email: gaurav8777@gmail.com (G. Sharma)

Received 4 December 2019; Accepted 13 June 2020

Abstract

In this study, a hydrophilic adsorbent based on cyanopropyl-functionalized silica nanoparticles (CNPr@SiO2 NPs) was successfully synthesized via a sol–gel method. The nanoparticles were characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. The synthesized CNPr@SiO2 NPs were then used as an adsorbent in dispersive micro-solid phase extraction (D-µ-SPE) of some polar and nonpolar organophosphorus pesticides from water samples prior to high-performance liquid chromatography-ultraviolet detection. Under the optimized parameters, the proposed method based on CNPr@SiO2 NPs showed low limits of detection in the range of 0.047–0.059 µg L−1, satisfactory recoveries (101.21%–109.12%), and good RSDs (0.20%–6.70%) for the extraction of OPPs from the various water samples. In addition, the developed D-µ-SPE method based on CNPr@SiO2 NPs showed a superior extraction capability toward the OPPs in comparison to commercial cyanopropyl-bonded silica solid-phase extraction cartridge.

Keywords: Silica nanoparticles; Cyanofunctionalized nanosilica; Dispersive micro-solid phase extraction; Organophosphorus pesticides

⁎ Corresponding authors.

Desalination and Water Treatment
www.deswater.com
doi: 10.5004/dwt.2020.26257
204 (2020) 366–376
November