

Mechanism of oxidative decomposition of direct red 89 by $\text{Bi}_2\text{O}_3/\text{TiO}_2$ composite under visible light irradiation: effect of co-existing cations and anions and artificial neural network modeling of key factor

Asiyeh Bazmeh^{a,b}, Ali Fatehizadeh^{a,c}, Bijan Bina^{a,c,*}, Bahareh Shoshtari-Yeganeh^c

^aDepartment of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran, Tel. +98 31 3792 3275; Fax: +98 31 3669 5849; emails: bbina123@yahoo.com (B. Bina), as.bazmeh@gmail.com (A. Bazmeh), a.fatehizadeh@hlth.mui.ac.ir (A. Fatehizadeh)

^bStudent Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

^cEnvironment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran, email: Baharshoshtary@gmail.com

Received 3 February 2020; Accepted 2 October 2020

ABSTRACT

In the present study, the $\text{Bi}_2\text{O}_3/\text{TiO}_2$ composite was successfully synthesized by the solvothermal method and used for photocatalytic degradation of direct red 89 (DR89) from aqueous solution under visible light and UV-C irradiation. The effects of influencing parameters including solution pH, $\text{Bi}_2\text{O}_3/\text{TiO}_2$ dose, initial DR89 concentration, reaction time, co-existing cations and anions, and persulfate (PS) dose were examined. Finally, the artificial neural network (ANN) model was developed for the prediction of the photocatalytic removal of DR89. The results showed that with increasing solution pH from 3 to 4, the DR89 degradation promptly enhanced from 33.8% to 54.4% and after that, vigorously declined to 2.5% at a pH of 8. In addition, the increase of $\text{Bi}_2\text{O}_3/\text{TiO}_2$ dose from 100 to 800 mg/L led to the DR89 degradation efficiency increase from 60.7% to 94.8%. It was found that for achieving a high DR89 degradation efficiency under visible light irradiation at 20 mg/L of DR89, the solution pH and reaction time should be 4 and 45 min, respectively. When PS was added in the photocatalysis process, the highest removal efficiency of DR89 was observed at PS dose of 2.5 mg/L under UV-C irradiation. The presence of co-existing anions in the medium inhibited the DR89 removal efficiency following a trend that $\text{PO}_4^{3-} > \text{Cl}^- > \text{SO}_4^{2-}$ and for co-existing cations was in the order of $\text{Na}^+ > \text{Ca}^{2+} > \text{Mg}^{2+}$. The decomposition of the DR89 obeyed the first-order reactions and the rate constant was 0.012 mg/L min. The correlation coefficient for ANN was calculated 0.993, confirming that the predicted data from the designed ANN model were in good agreement with the experimental data.

Keywords: ANN model; $\text{Bi}_2\text{O}_3/\text{TiO}_2$ composite; Co-existing cations and anions; Direct red 89

* Corresponding author.