Facile solid-state synthesis of heterojunction CeO_2/TiO_2 nanocomposite as an efficient photocatalyst for the degradation of organic pollutants

Muhammad Zobayer Bin Mukhlish, Md. Amirul Islam, Md Anisur Rahman, Shafiul Hossain, Md. Akhtarul Islam, Md. Tamez Uddin*

Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh, emails: mtuddin_cep@yahoo.com/mtuddin-cep@sust.edu

Received 26 October 2020; Accepted 9 May 2021

ABSTRACT

In this study, CeO_2/TiO_2 nanocomposites (NCs) were synthesized by adopting a straightforward two steps method comprising, first, the synthesis of CeO₂ and TiO₂ nanoparticles by wet chemical precipitation method and second, the heterostructure CeO₂/TiO₂ NCs by solid-state reaction process. The CeO₂/TiO₂ NCs were characterized by X-ray diffraction, N₂ adsorption–desorption isotherm analysis, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis diffuse reflectance spectroscopy. Regardless of CeO₂ content, the bandgap energies of CeO₂/ TiO₂ NCs were lower than that of pure TiO₂. Photocatalytic activity of the synthesized photocatalysts was assessed by degrading a model dye methylene blue under the illumination of UV light. The CeO₂/TiO₂ NCs containing 2 wt% CeO₂ exhibited higher photocatalytic degradation efficiency compared to reference TiO₂ (P25), pure TiO₂, and CeO₂/TiO₂ NCs containing CeO₂ other than 2 wt%. The alkaline environment was favorable for photocatalytic decomposition of cationic dye methylene blue (MB). The enhanced degradation efficiency of CeO₂/TiO₂ NCs was substantiated in terms of vectorial charge separation and the reduction of photogenerated charge carriers owing to the band offsets existing at the interface between CeO₂ and TiO₂ NPs. Finally, no significant change in the degradation efficiency of CeO₂/TiO₂ NCs after successive uses evidenced the stability and reusability of the photocatalysts. Therefore, it can be concluded that the synthesized CeO₂/TiO₂ heterostructure photocatalyst would be a promising candidate for application in wastewater treatment.

Keywords: Solid state synthesis; CeO₂/TiO₂ nanocomposites; Heterojunction photocatalyst; Degradation efficiency; Band offset

* Corresponding author.

1944-3994/1944-3986 © 2021 Desalination Publications. All rights reserved.