ABSTRACT

In the last decade, a number of methods have been developed for the in-situ characterization of fouling layers formed in confined geometry. Laser sheet at grazing incidence and ultrasonic time domain reflectometry are relevant methods to measure fouling layer thickness. However, these two methods have never been used simultaneously during the same filtration run. The objective of this study was to compare values measured by both methods. After validation of the thicknesses given by each method on an especially designed calibrated gauge, measurements were made simultaneously by both methods on porous fouling layers formed on two membranes with different permeabilities. The results show that, in the case of a compact fouling layer, the thicknesses given by the two methods are the same. However, for more porous layers, such as concentration polarization layers, thicknesses differ, although the growth kinetics is identical. Thus, laser sheet at grazing incidence and ultrasonic time domain reflectometry are two complementary methods to determine fouling layer thickness and/or its growth kinetics according to operating conditions.

Keywords: Particle deposit; In-situ measurement; Ultrasonic Time Domain Reflectometry; Structural properties; Laser Sheet at Grazing Incidence; Bulk suspension/deposit interface

*Corresponding author.

Presented at the AMS6/IMSTEC10, The 6th conference of the ASEANIAN Membrane Society in conjunction with the 7th International Membrane Science and Technology Conference, Sydney Australia, November 22–26, 2010