A simplified kinetic model for a full scale anaerobic wastewater treatment plant of a sugar factory under unsteady conditions

N. Altınay Perendeci a,*, Abdurrahman Tanyolaç b,†, S. Serdar Çelebi c

aDepartment of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey
Tel. +90 242 3106334; Fax: +90 242 3106306; email: aperendeci@akdeniz.edu.tr
bDepartment of Chemical Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
cDepartment of Energy Systems Engineering, Maltepe University, 34857 Maltepe, Istanbul, Turkey

Received 19 February 2011; Accepted 18 October 2011

ABSTRACT

A simplified time dependent mathematical model was developed for an industrial a full-scale two stage anaerobic wastewater treatment plant of a sugar factory under unsteady conditions. As an overall approach, a two-step (acidogenesis and methanogenesis) instantaneous mass balance was considered in the model. The reactor equations employed were based on continuous flow well-mixed conditions. Kinetic parameters related to acidogenic and methanogenic reactions were imported from literature studies. The kinetic model was used to simulate MLVSS (mixed liquor volatile suspended solids), VFA (volatile fatty acid) and COD (chemical oxygen demand) equivalent glucose concentrations in hydrolysis tank, and MLVSS, VFA and gas production in anaerobic tank by making use of data from the full-scale anaerobic methane production plant. The model satisfactorily predicted the measured variables in the hydrolysis tank, but prediction was poor for variables in the anaerobic tank. The model has limitations in anaerobic reactions, which are basically due to model kinetic parameters unspecific to sugar factory wastewater.

Keywords: Anaerobic treatment; Kinetic modeling; Sugar industry

*Corresponding author.

†This article is dedicated to the memory of Prof. Dr. Abdurrahman Tanyolaç (1954–2011), who passed away after the manuscript was written.