Pretreatment of micro-polluted surface water with a biologically enhanced PAC–diatomite dynamic membrane reactor to produce drinking water

Huaqiang Chua,b, Yalei Zhangb,*, Bingzhi Dongb, Xuefei Zhoub, Dawen Caoc, Zhimin Qiangd, Zhenxun Yub, Hongwu Wanga

aSchool of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
bState Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
cNational Engineering Research Centre for Urban Pollution Control, Shanghai 200092, China
dResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Received 25 January 2011; Accepted 3 November 2011

\textbf{ABSTRACT}

This study developed a biologically enhanced powder activated carbon (PAC) diatomite dynamic membrane reactor (BPDDMR) to pretreat micro-polluted surface water for drinking water production at lab-scale in continuous mode. In the start-up operation period, the BPDDMR required approximately 26 and 31 d to achieve stable removal efficiency of COD\textsubscript{Mn} and NH\textsubscript{3}–N, respectively. Turbidity was always below 0.5 NTU throughout the operation experiment in the permeate flux range of 21–54 l m−2 h−1. The BPDDMR could effectively remove the hydrophilic portion of dissolved organic materials (DOM) present in the raw water. The temperature affected pollutant removal (especially COD\textsubscript{Mn}), which was mainly ascribed to microbial degradation and was also enhanced by PAC and diatomite adsorption. During the precoating period, the stainless steel support mesh (aperture 74 \(\mu\)m) first intercepted the large PAC (50–100 \(\mu\)m), and then diatomite particles (5–20 \(\mu\)m) were intercepted to form a two-layer structure of the biologically enhanced PAC diatomite dynamic membrane (BPDDM). It was found that as the air pressure increased, the backwash efficiency improved and had less residual in the cake layer. Air backwash with a pressure of 200–250 kPa completely cleaned the BPDDM surface.

\textbf{Keywords:} Biologically enhanced PAC–diatomite dynamic membrane reactor; Micropolluted surface water; Filtration; Biodegradation; Air backwash; Drinking water treatment

*Corresponding author.