Effect of anaerobic time on biological nitrogen removal in a modified SBR

Jun Lia, *, Tao Taob, Xue-bin Lic, Li-min Wangd, Hui Zhenge

aSchool of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, Jiaogong Road 198#, 310012, China
Tel. +86 018758575058; Fax: +86 057188832369; email: lijun681116@163.com
bSchool of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan, Hubei, Luoyu Road 1037#, 430074, China
cDepartment of Management and Information Technology, Nantong Shipping College, Nantong, Jiangsu, Tongsheng Road 185#, 226010, China
dDepartment of Water Supply and Wastewater Design, Hangzhou Architectural & Civil Engineering Design Institute Co. Ltd., Hangzhou, Zhejiang, Huansha Road 116#, 310001, China
eGuizhou University of Vocational and Technical Education, Guiyang, Guizhou, Tianhaiqingcheng 5#, 550002, China

Received 10 April 2012; Accepted 28 February 2013

ABSTRACT

A new modified sequencing batch reactor (SBR) was proposed to treat wastewater. The modified SBR consists of 4 tanks with different anaerobic/anoxic/aerobic function. The organic substrate degradation and nitrification could occur sequentially in the different tank of the modified SBR. The dominant microorganisms grew in different tank to avoid the impact of high organic loadings. The results showed that the modified SBR was a high efficient reactor. The average NH_4^+-N and total nitrogen removal efficiency was 98 and 52, respectively. The ratio of influent NH_4^+-N/TN was equal approximately to TN removal efficiency, indicating that the TN removal efficiency was affected by the influent NH_4^+-N concentration. The longer anaerobic time was favored for the nitrogen removal. The optimal anaerobic time should be set at 1 h. The optimal ratio of aerobic/anaerobic time ($T_{O/A}$) was 0.5.

Keywords: Modified SBR; Nitrogen removal; Municipal wastewater; MLSS; EBPR

Presented at the 2012 Qingdao International Desalination Conference June 26–29, 2012, Qingdao, China

1944-3994/1944-3986 © 2013 Balaban Desalination Publications. All rights reserved.