Adsorption performance of heavy metal ions between EAF steel slag and common mineral adsorbents

Guanling Songa, Yue Wub, Xiao Chenc, Wenhua Houb,*, Qunhui Wangd

aSchool of Medicine, Shihezi University, Shihezi 832000, China
bResearch Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China, Tel. +86 10 84915292; Fax: +86 10 84915219; email: houwenhua@sina.com
cShandong Urban and Rural Plan Design Institute, Jinan 250000, China
dDepartment of Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

Received 20 June 2012; Accepted 22 January 2014

\textbf{ABSTRACT}

Heavy metal pollution in water has been a serious environmental problem in recent years. Selecting favorable heavy metal adsorption materials for wastewater treatment is very important. Two kinds of electric arc furnace (EAF) steel slags, clinoptilolite, ceramsite, and expanded vermiculite, which were investigated in this study to select favorable heavy metal adsorption materials, could adsorb three kinds of heavy metal ions (Cu2+, Cd2+, and Pb2+). The isotherm adsorption, as well as the effects of adsorption time and dosage on the heavy metal ion removal capability of these adsorption materials, was analyzed in this research. Results showed that the capability of the EAF steel slags to adsorb Cu2+, Cd2+, and Pb2+ was evidently higher than those of clinoptilolite, ceramsite, and expanded vermiculite. The dosages of the EAF steel slags required to remove the same quantity of the three heavy metal ions were the least among the aforementioned adsorbents. The EAF steel slags have wide application prospects for heavy metal adsorption in wastewater treatment.

\textit{Keywords:} Electric arc furnace steel slag; Common adsorbent; Isotherm adsorption; Time; Dosage

*Corresponding author.