COD and color removal from textile effluent using granular sludge biomass: effect of substrate and riboflavin

Azmi Arisa,b, Khalida Mudaa,b,*, Mohd Razman Salima,b, Zaharah Ibrahimc

aFaculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
bInstitute of Environmental and Water Resource Management, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
cFaculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Tel. +607 5538653; Fax: +607 5566157; email: khalida@utm.my

Received 12 April 2013; Accepted 4 July 2013

ABSTRACT

Factorial design and response surface methodology were employed to investigate the effects of substrate (500–3,000 mg/L) and riboflavin (1–150 \mu M) concentrations on the chemical oxygen demand (COD) and color removal with biogranules in the treatment of textile effluent using sequential anaerobic-aerobic batch experiment. Both variables, except for the concentration of riboflavin under anaerobic conditions, and the interaction between both variables show significant effects on COD removal. The substrate and riboflavin concentrations also significantly affect on the decolorization of Synozol Red K-4B and Sumifix Navy Blue EXF. In addition, the effect of substrate on color removal was found to be time dependent. The highest COD removal was 85.5\%, which corresponds to substrate and riboflavin concentrations of 2,634 mg/L and 23 \mu M, respectively. The highest color removal for Synozol Red K-4B and Sumifix Navy Blue EXF was achieved after 12 h of treatment, with more than 80\% color removal at substrate and riboflavin concentrations of 866 mg/L and 128 \mu M, respectively. Based on the result obtained, it shows that the magnitude and direction effects on COD and color removal are very much dependent on the type and duration of react phases and as well as the complexity of dye structural involved in the experiment. Both of the variables (substrate and riboflavin) showed significant interaction effect for both COD and color removal. The best statistical model equations correlating the concentrations of the substrate and redox mediators to COD and color removal for both types of dyes were determined.

Keywords: Biogranules; Color; Riboflavin; Substrate; Textile wastewater

*Corresponding author.

1944-3994/1944-3986 © 2013 Balaban Desalination Publications. All rights reserved.