The investigation of the bacterial indicators and point sources of pollution for the Nanshih River, Taiwan: a case study

Yi-Tang Changa,*, Yu-Jie Changb

aDepartment of Microbiology, Soochow University, ShinLin 11102, Taiwan
Tel. +886 2 2881 9471 ext.6862; Fax: +886 2 2883 1193; email: ytchang@scu.edu.tw
bDepartment of Earth and Life Science, Taipei Municipal University of Education, Taipei 11048, Taiwan

Received 19 March 2013; Accepted 1 April 2013

ABSTRACT

The objective was to evaluate representative bacterial indicators found in the Nanshih River, a resource having multiple uses including recreation, water supply, and agriculture. Human activities were investigated in order to clarify the relationship between bacterial indicators and point source pollution discharged into this river. The optimal bioindicator was evaluated using four approaches by two-dimensional principal component analysis (PCA), which included ten water parameters, the median river pollution index parameters, bacterial numbers and specific fluorescence in situ hybridization indicators. The results indicate that \textit{Bifidobacterium} spp. with the range of 1.80 ± 0.96–14.14 ± 1.24% were identified as the best bioindicator for the Nanshih River and these bacteria are able to identify four characteristic groups of point pollution sources using PCA. It is suggested the specific bacterial indicator need to be used for the regular monitoring of the Nanshih River in addition to the present regulation requirements of total coliforms counts. The major contributor to the biological pollutants was determined to be hot spring resort activity, which implies that tourists may be vulnerable to waterborne recreational illnesses. An effective strategy aimed at controlling point source pollution should be able to reduce drinking water resource and recreational activity public health risks associated with the Nanshih River.

Keywords: Bacterial indicators; Median river pollution index (RPI-M); Fluorescence in situ hybridization (FISH); \textit{Bifidobacterium} spp.; Total coliforms (TC)

*Corresponding author.

Presented at the Fifth Annual International Conference on “Challenges in Environmental Science & Engineering—CESE 2012” Melbourne, Australia, 9–13 September 2012

1944-3994/1944-3986 © 2013 Balaban Desalination Publications. All rights reserved.