Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent

Srinivasa R. Popuria,*, Rondy Fredericka, Chia-Yuan Changb, Shing-Shyong Fangc, Cheng-Chien Wangd, Lien-Chieh Leee

aDepartment of Biological & Chemical Sciences, The University of the West Indies, Cave Hill Campus, St. Michael 11000, Barbados
Tel. +1246 417 4340; Fax: +1246 417 4325; email: popurishrinu@gmail.com
bCollege of Sustainable Environment, Chia Nan University of Pharmacy and Science, 60, Erh-Jen Road, Sec. 1, Jen-Ten, Tainan 71710, Taiwan
cEnvironmental Protection Bureau, Nantou County Government, Nantou, Taiwan (ROC)
dDepartment of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Yung-Kang City 71005, Tainan County, Taiwan
eDepartment of Environmental Engineering and Science, Feng-chia University, Taichung 40724, Taiwan

Received 23 March 2013; Accepted 5 May 2013

\textbf{ABSTRACT}

Carbon nanotubes (CNTs) have been considered as promising materials in various applications including water treatment. Manipulation of CNT’s with polymer offers unique properties as a composite in treatment of wastewater and removal of heavy metal ions. In the present work, we have developed a chitosan (CS)/multiwall carbon nanotubes (MWCNTs) composite sorbent by mixing the naturally occurring biopolymer CS and functionalized MWCNTs in 1\% acetic acid solution. The obtained composite adsorbent was used successfully for the removal of copper (II) ions from aqueous solutions. The influence of variable parameters like pH, concentration of the metal ion, amount of adsorbent, and contact time on the extent of adsorption was investigated by batch method. Graphical correlations of various adsorption isotherm models such as Langmuir and Freundlich have been carried out. The data were analyzed by the Lagergren pseudo-first-order and pseudo-second-order kinetic models. Further the adsorption performance of the CS/MWCNTs composite was compared with CS and cation exchange resin. The maximum monolayer capacity of CS/MWCNTs composite and CS was found to be 454.55 and 178.57 mg/g, respectively. The prepared adsorbents were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy analysis.

\textbf{Keywords:} Chitosan; Multi wall carbon nanotubes; Biosorption; Copper; Kinetics; Langmuir adsorption

*Corresponding author.

Presented at the Fifth Annual International Conference on “Challenges in Environmental Science & Engineering—CESE 2012” Melbourne, Australia, 9–13 September 2012

1944-3994/1944-3986 © 2013 Balaban Desalination Publications. All rights reserved.