Removal of anionic dye from aqueous solution by magnesium silicate gel

Hua Yang*, Baowei Sun, Haizeng Wang

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, School of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
Tel. +86 15192546728; Fax: 0532 66781903; email: xueyiyang10@126.com

Received 9 January 2013; Accepted 11 July 2013

ABSTRACT

Mesoporous magnesium silicate gel was successfully synthesized and characterized by N$_2$ adsorption/desorption technique and FT-IR. The adsorption experiments of anionic dye (weak acid red 2R) onto prepared magnesium silicate gel were studied by varying mass of adsorbent, dye concentration, pH, temperature, and contact time. The results showed magnesium silicate gel had high surface area, 277.37 m2g$^{-1}$. The adsorption capacity increases with increasing initial dye concentration, adsorption temperature, and contact time. The experimental data were applied to three adsorption kinetic models and the results indicated that the adsorption behavior was described very well by the second-order kinetics model with the high correlation coefficients ($R^2 > 0.99$). Intra-particle diffusion was performed in three different stages. The activated energy obtained was 127.6 kJ mol$^{-1}$ and the enthalpy, entropy, and standard free energy were calculated and given that ΔH^o was 80.1 kJ mol$^{-1}$, ΔS^o was 300.1 J mol$^{-1}$, and ΔG^o were negative values at the different temperatures. The adsorption process is rapid and physisorption in nature. Therefore, magnesium silicate gel would be used in the industrial wastewater treatment as a potential adsorbent.

Keywords: Magnesium silicate gel; Mesoporous adsorbent; Adsorption; Anionic dye; Kinetics study

*Corresponding author.