Methyl Orange adsorption by reuse of a waste adsorbent poly(AAc/AM/SH)-MB superabsorbent hydrogel: matrix effects, adsorption thermodynamic and kinetics studies

Tripti Singh, Reena Singhal*

Department of Plastic Technology, Harcourt Butler Technological Institute, Kanpur 208002, UP, India
Tel. +91 512 2534001 05; Fax: +91 512 2533812; email: reena_singhal123@rediffmail.com

Received 31 May 2013; Accepted 8 October 2013

ABSTRACT

The traditional method for the treatment of used adsorbents is usually recovery for recycling or direct discarding them. In the present study, a more potential and economical method is described to reutilize a waste adsorbent. Poly(AAc/AM/SH) SAHs have proved to be a good adsorbent for cationic MB dye, and after adsorption, the SAHs were recovered for recycling. In this work, the waste MB dye loaded poly(AAc/AM/SH) SAHs were not recovered but directly applied to adsorb an anionic MO dye from another waste solution. The poly(AAc/AM/SH) SAHs after the MB dye adsorption were stable and suitable for MO dye adsorption for altered surface structures within a wide pH range. The various factors affecting the MO dye adsorption, including pH, contact time, ionic strength, initial concentration of the MO dye, and temperature, were systematically investigated. The equilibrium adsorption data fitted very well to the Langmuir adsorption isotherm and the maximum MO dye adsorption capacity reached to a high of 134 mg/g at 30˚C. The thermodynamic parameters such as ΔH^0, ΔG^0, and ΔS^0 for the MO dye adsorption processes onto the SAHs were also evaluated, and the obtained negative ΔG^0 and ΔH^0 values confirmed that the MO adsorption process was spontaneous as well as exothermic. The kinetic studies indicate that the MO dye adsorption process was well consistent with the pseudo-second-order kinetic model. The desorption studies showed that the regeneration of the poly(AAc/AM/SH)-MB SAHs adsorbent can be easily achieved.

Keywords: Hydrogels; Sodium humate; Adsorption kinetics; Methyl Orange adsorption; Thermodynamic parameter