Temperature and air–water ratio influence on the air stripping of benzene, toluene and xylene

Mohammed Evuti Abdullahia, Mohd Ariffin Abu Hassanb,*, Zainura Zainon Noorb, R.K. Raja Ibrahimc

aFaculty of Chemical Engineering, Department of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
bInstitute of Environmental and Water Resources Management, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia, Tel. +607 5535485; email: mariffin@utm.my
cFaculty of Science, Physics Department, Advanced Photonic Science Institute, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia

Received 15 November 2013; Accepted 5 March 2014

\textbf{ABSTRACT}

Volatile organic compounds in water and wastewater can be removed using air stripping. The effects of temperature and air-water ratios on the air stripping of benzene, toluene and xylene (BTX) from wastewater have been examined at a temperature range of 30–50°C and air-water ratios of 20–100. Removal efficiencies of >99%, >93% and 93% for BTX, respectively, were obtained at 50°C and air-water ratios of 100. The removal efficiencies increase non-linearly with temperature and air-water flow ratio. The effects of increasing temperature on the removal efficiency were found to be more significant at temperatures between 30 and 35°C than at 45 and 50°C. The effects of increasing water-air ratios on the removal efficiency were more significant at air-water ratios of 20–60 than at 80–100. The results indicate that a high removal of BTX can be achieved by operating the air stripper at high temperature conditions even at relatively low air-water ratios and vice versa.

\textit{Keywords}: Air stripping; Volatile organic compounds; Removal efficiency; Wastewater treatment

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.