Adsorption of copper from aqueous solution onto natural sepiolite: equilibrium, kinetics, thermodynamics, and regeneration studies

Merve Dönmeza, Selva Camcıa, Feryal Akbala,*, Mehtap Yağanb

aEngineering Faculty, Environmental Engineering Department, Ondokuz Mayıs University, Samsun, Turkey, Tel. +90 362 3121919; Fax: +90 362 4576094; email: feryal.akbal@gmail.com
bArts and Science Faculty, Chemistry Department, Ondokuz Mayıs University, 55139 Kurupelit, Samsun, Turkey

Received 7 May 2013; Accepted 6 March 2014

\textbf{ABSTRACT}

The adsorptive properties of natural sepiolite in the removal of copper (Cu2+) from aqueous solution were investigated. The results show that the amount of adsorption of copper ion increases with initial copper concentration, contact time, and solution pH. The pseudo-first-order, pseudo-second-order, and Elovich models were used to describe the kinetic data and the rate constants were evaluated. The adsorption of the copper onto natural sepiolite at different operating conditions followed the pseudo-second-order model. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) isotherm models. The equilibrium adsorption results are fitted better with Langmuir isotherm compared to the other models. The Langmuir monolayer adsorption capacity of sepiolite was estimated as 9.64 mg/g at pH 6.0 and temperature of 20°C. An increase in temperature was found to induce a positive effect on the sorption process. Sorption of Cu2+ onto sepiolite was spontaneous and endothermic. The values of the enthalpy (\(\Delta H\)) and entropy of activation (\(\Delta S\)) were 14.892 kJ/mol and 96.342 J/mol K, respectively, at pH 5.0.

\textit{Keywords:} Adsorption; Sepiolite; Kinetics; Isotherms; Thermodynamics; Regeneration

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.