Adsorption of Ni(II) from aqueous solution by activated carbons derived from tobacco stem

C. Narasimha Raoa, K. Subbarayudua, Y. Vijayab, M. Venkata Subbaiahc,*

aDepartment of Chemistry, Sri Venkateswara University, Tirupati 517502, AP, India
bDepartment of Chemistry, Vikrama Simhapuri University, Nellore 524003, AP, India
cDepartment of Chemical Engineering, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea

Tel. +82 01068251981; email: mvsmanagapat@gmail.com

Received 27 August 2013; Accepted 26 March 2014

\textbf{ABSTRACT}

Activated carbons from tobacco stem were identified as the most potent Ni(II) sorbent ($Q_0 = 97.32$ mg/g). The tested plant material adsorbed Ni(II) optimally at pH 5.3. The efficiency of the adsorbent was investigated using batch adsorption technique under different experimental conditions such as solution pH, initial metal ion concentration, and agitation time. The adsorption of Ni(II) followed pseudo-second-order kinetics. Adsorption isotherms were expressed by Langmuir and Freundlich models. Langmuir adsorption model fits the experimental data reasonably well than Freundlich model for the present study. The thermodynamic parameters such as standard Gibb’s free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were evaluated. The thermodynamics of Ni(II) on activated carbons from tobacco stem indicates its spontaneous and endothermic nature. The results obtained show that activated carbons from tobacco stem, which has a very low economic value, may be used for the effective treatment of aqueous solutions contaminated with Ni(II).

\textit{Keywords:} Biosorption; Activate carbons from tobacco stem; Isotherms; Kinetics; Thermodynamics