Photocatalytic degradation and mineralization of diazinon in aqueous solution using nano-TiO$_2$ (Degussa, P25): kinetic and statistical analysis

Roshanak Rezaei Kalantarya,b, Yousef Dadban Shahamata,c,*, Mahdi Farzadkiaa, Ali Esrafilia, Hosseinali Asgharniaa

aDepartment of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran, Tel. +9888 622721; Fax:+9821 88622707; email: roshanak_rezaikalantary@yahoo.com (R.R. Kalantary), Tel. +9891 11789457; Fax: +9817 14436107; email: ydadban@yahoo.com (Y. Dadban Shahamat), Tel. +9888 622721; Fax:+9821 88622707; emails: mahdifarzadkia@gmail.com (M. Farzadkia), a_esrafil@tums.ac.ir (A. Esrafil), eha_ali1@yahoo.com (H. Asgharnia)

bCenter for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran

cEnvironmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran

Received 19 October 2013; Accepted 20 April 2014

ABSTRACT

In this study, photocatalytic degradation of diazinon was investigated using nano-TiO$_2$, Degussa P25, as a photocatalyst and the effects of some operational parameters such as aeration, pH, photocatalyst concentration, and the irradiation time were also examined. Dispersive liquid-liquid microextraction technique was used to extract and pre-concentration of residual diazinon from the liquid samples and all experiments were carried out by gas chromatography. Amount of degradation and mineralization were determined by gas chromatograph with flame ionization detector (GC/FID) and COD measurements, respectively. The optimum condition for degradation of diazinon has been obtained in the pH 6, [nano-TiO$_2$] = 0.2 g/L, and [time] = 120 min. In the optimal condition the removal efficiency of diazinon and COD were 99.64 and 65%, respectively. The results have shown that the nano-TiO$_2$, aeration and time of reaction have a positive effect on photocatalytic degradation of diazinon and COD removal. Statistical analysis showed that the maximum removal of diazinon and COD were due to UV irradiation (71%, 41%), exposure time (16%, 39%), aeration (7%, 4%), and increased concentration of nano-TiO$_2$ (0.4%, 2%), respectively; and the kinetics of photodegradation were found to follow a first-order kinetic model and the constant rate, at optimal condition, was 0.038 (min$^{-1}$).

Keywords: Diazinon; Mineralization; Nano-TiO$_2$; Photocatalytic degradation

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.