Modeling of two up-flow fixed-bed columns in series for the biosorption of Cr$^{6+}$ and Ni$^{2+}$ by sugarcane bagasse

Iván L. Rodríguez Ricoa, Nabin Kumar Karna, Inés Alomá Vicentea, Roberto Cabrera Carrazanaa, Alicia Rondab,*

aChemical Engineering Department, Central University “Marta Abreu” of Las Villas, Carretera a Camajuaní Km 5 1/2, Santa Clara, Villa Clara, Cuba, Tel. +53 42 211825; emails: ivanl@uclv.edu.cu (I.L. Rodríguez Rico), kumark@uclv.edu.cu (N.K. Karan), Tel. +53 42 226768; email: inesav@uclv.edu.cu (I.A. Vicente), Tel. +53 42 219650; email: rcabrera@uclv.edu.cu (R.C. Carrazana)

bChemical Engineering Department, University of Granada, Avda. Fuentenueva, s/n 18071, Granada, Spain, Tel. +34 958 243315; Fax: +34 958 248992; email: alirg@ugr.es

Received 3 February 2014; Accepted 21 June 2014

ABSTRACT

In this work, results of the biosorption of Cr$^{6+}$ and Ni$^{2+}$ by sugarcane bagasse in two up-flow fixed-bed columns in series have been presented. The experimental data were adjusted for several kinetic models that describe the breakthrough curve obtained for a single column and for two columns in series. The Dose–Response model is the one that better adjusts the experimental data for the studied metals with a high correlation coefficient. Although with a single column, it is possible to reduce the metal concentrations under the requirements of Cuban normative, the use of two columns in series guarantees concentration nearly to 0 for two metals. So, the percentage removal with two columns in series were 98.2 and 92.8% for Cr$^{6+}$ and Ni$^{2+}$, respectively.

Keywords: Biosorption; Fixed-bed columns; Sugarcane bagasse; Heavy metals; Modeling

*Corresponding author.