Environmental remediation of aqueous cyanide by photocatalytic oxidation using a NiFe$_2$O$_4$/TiO$_2$–SiO$_2$ core–shell nanocomposite

Mohammad W. Kadia, R.M. Mohameda,b,c,*

aFaculty of Science, Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia, Tel. +96 626952293; Fax: +96 626952292; email: redama123@yahoo.com (R.M. Mohamed)

bAdvanced Materials Department, Central Metallurgical R&D Institute, CMRDI, P.O. Box 87 Helwan, Cairo 11421, Egypt

cCenter of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia

Received 18 February 2014; Accepted 6 August 2014

ABSTRACT

A core–shell NiFe$_2$O$_4$/SiO$_2$–TiO$_2$ nanocomposite photocatalyst was prepared in a three-stage manner. The NiFe$_2$O$_4$ core was prepared by applying an organic precursor method. This core was coated with SiO$_2$ and then with TiO$_2$. The optimum preparation conditions were determined by examining various molar ratios of Si, Ti, ethanol, and ammonia. X-ray powder diffraction, DR-UV, TEM, and magnetization techniques were used to characterize the nanocomposite. Using molar ratios of SiO$_2$/NiFe$_2$O$_4$ = 0.03, ethanol/NiFe$_2$O$_4$ = 20, ammonia/NiFe$_2$O$_4$ = 1, and Ti/ethanol = 0.8, a magnetic photocatalyst of enhanced properties was synthesized. A surface area of 520 m2/g, saturation magnetization value of 53.2 amu/g, coercivity of 500.0 Oe, and a band gap of 2.54 eV were observed for the synthesized NiFe$_2$O$_4$/SiO$_2$–TiO$_2$ nanocomposite photocatalyst. These characteristics allowed excellent photodegradation of the toxic cyanide ion. In addition, the strong magnetic properties allow for the efficient reuse of the catalyst.

Keywords: Core–shell; Visible photocatalyst; Cyanide