Research on Fe-loaded ZSM-5 molecular sieve catalyst in high-concentration aniline wastewater treatment

Jiang Sheng-taoa,b, Zhu Jian-zhonga,*, Bai Shu-lib, Guan Yu-jiangb, Yao Junc

aKey Laboratory for Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nan Jing 210098, China, Tel. +86 013626682900; emails: jst80@126.com (J. Sheng-tao), Zhuhhai2010@hhu.edu.cn (Z. Jian-zhong)
bDepartment of Environmental Engineering, Taizhou University, Tai Zhou 318000, China
cZhejiang Xinnong Chemical Industry Co., Ltd., Tai Zhou 317300, China

Received 1 January 2014; Accepted 18 September 2014

\textbf{ABSTRACT}

Fe-ZSM-5 molecular sieve catalysts were fabricated and characterized through scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction techniques. Researches were developed within a heterogeneous Fenton-like catalysis system established with Fe-ZSM-5 molecular sieve catalyst and H\textsubscript{2}O\textsubscript{2}, with regard to the effects of pH, H\textsubscript{2}O\textsubscript{2} dosage, inlet concentration of aniline, and catalyst dosage on extent of removal and reaction rate, and preliminarily revealed the mechanisms of degradation in aniline wastewater. Outcomes have demonstrated that Fenton-like Fe-ZSM-5 molecular sieve catalysts are functionally stable and recyclable in which the extents of removal of aniline, COD\textsubscript{Cr} and TOC are 96.4, 92.5, and 72.5\%, respectively; with 3 g catalyst dosed into 500 mL aniline wastewater of 200 mg L-1 in concentration, pH 4, and H\textsubscript{2}O\textsubscript{2} of 0.5Q\textsubscript{th} (0.31 mL L-1), the Fenton-like conditions could not only break up the inner structures of aniline, but also catalyze the products in further mineralization to CO\textsubscript{2} and H\textsubscript{2}O.

\textbf{Keywords:} Fe-ZSM-5 molecular sieve; Aniline wastewater; Fenton-like; Degradation