Direct dye biosorption by immobilized barley husk

Moin ud Din*, Haq Nawaz Bhatti, Muhammad Yasir, Aisha Ashraf

Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan, Tel. +92 321 7805005; Fax: +92 419 200193; emails: moingenious@yahoo.com, moingenious@gmail.com (M. ud Din), Tel. +92 333 6528455; email: hnbhatti2005@yahoo.com (H.N. Bhatti), Tel. +92 321 7539910; email: yasirchemist@yahoo.com (M. Yasir), Tel. +92 344 7878172; email: aisha_ashraf43@yahoo.com (A. Ashraf)

Received 5 December 2014; Accepted 3 March 2015

ABSTRACT

The potential of low-cost adsorbent–barley husk to remove direct dye, namely Actarus Red BWS through biosorption process has been investigated in both continuous and batch modes. A series of experiments have been performed to evaluate the optimum biosorption conditions such as pH (2–5), biosorbent dosage (0.2–0.8 g), initial dye concentration (50–200 ppm), equilibrium time, and temperature (303–333 K). The adsorption efficiency decreased with increase in pH and increased with increase in biomass dose. Equilibrium isotherms have been developed by applying data to Langmuir, Freundlich, and Flory–Huggins models. The highest correlation coefficient ($R^2 = 0.99$) related to Langmuir isotherm indicated good fitness of this model, explaining the sorption as monolayer process. The process followed pseudo-second-order kinetic model. The negative ΔG° and positive ΔH° values indicated the spontaneous and endothermic nature of process. The continuous mode of biosorption has been tested as the function of flow rate and bed height too.

Keywords: Biosorption; Barley husk; Actarus Red BWS; Isotherm; Kinetics

*Corresponding author.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.