Organic fouling and osmotic backwashing in PRO

Jin-Woo Sima, Sook-Hyun Namb, Jae-wuk Koob, Yong-Jun Choic, Tae-Mun Hwangb,*

aDepartment of Construction Environmental Engineering, University of Science & Technology, 113 Gwahangno, Yuseong-Gu, Daejeon 305-333, Korea

bDepartment of Construction Environmental Engineering, Korea Institute of Civil Engineering and Building Technology, 2311 Daehwa-Dong, Ilsan-Gu, Gyeonggi-Do, Goyang-Si 411-712, Korea, Tel. +82 31 910 0741; Fax: +82 31 910 0291; email: taemun@kict.re.k (T.-M. Hwang)

cCivil Engineering Department, Kyungnam University, Masan 631-701, Korea

Received 15 January 2015; Accepted 2 April 2015

\textbf{ABSTRACT}

The pressure-retarded osmosis process is the next generation seawater desalination technology and is considered as eco-friendly and economic renewable energy. As such, there are active studies of means of efficient cleaning to restore the membrane performance degraded due to the reversible membrane fouling that inevitably occurs after prolonged operation. This study evaluated the fouling rate by organic alginate, humic, and BSA (bovine serum albumin). Also, we focused on the comparison of cleaning methods which are physical flushing and osmotic backwashing (OB). For the comparison of the cleaning efficiency, we used alginate compound as a model substances representative of natural organic matter. Physical cleaning (PC) is the flushing method by flowing the distilled water on the membrane active and support layer in high velocity to remove the accumulated foulants on the membrane surface. OB is the method of backflow generated by osmosis to remove the accumulated foulants on/in the membrane active and support layer. The comparison indicated that OB resulted in higher membrane performance recovery than PC. To determine the optimum condition for higher membrane performance recovery from OB, the tests were performed at different concentrations of OB and cleaning speeds. The test indicated that the membrane performance recovery efficiency increased when the concentration increased to up to 1.7 M NaCl and when the cleaning speed increased by changing the feed flow rate at the constant concentration of 1.2 M NaCl.

\textit{Keywords:} Physical cleaning; Osmotic backwashing; Membrane performance recovery

*Corresponding author.

\textit{Presented at GMVP Desalination Academic Workshop, Seoul, Korea, December 9, 2014}

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.