Optimization of Cr(VI) removal by sulfate-reducing bacteria using response surface methodology

R. Ahmadia, A. Rezaeeb,* , M. Anvaric, H. Hossinib, S.O. Rastegard

aDepartment of Biology, Science and Research Branch, Islamic Azad University, Rasht, Iran, Tel. +982182883590; Fax: +982182884555; email: rominahmd@yahoo.com
bFaculty of Medical Sciences, Department of Environmental Health, Tarbiat Modares University, Tehran, Iran, Tel. +982182883590; Fax: +982182884555; emails: rezaee@modares.ac.ir (A. Razae), hoo.hosseini@gmail.com (H. Hessini)
cDepartment of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran, Tel. +982182883590; Fax: +982182884555; email: m.anvari@yahoo.com
dBiotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran, Tel. +982182883980; Fax: +982182883517; email: so.rastegar@gmail.com

Received 11 October 2014; Accepted 8 April 2015

\textbf{ABSTRACT}

The aim of this work was to optimize Cr(VI) removal using sulfate-reducing bacteria from wastewater. Three effective factors including initial pH, initial Cr(VI) concentration, and inoculation percentage were optimized using a central composite design of response surface methodology. The optimum conditions were initial pH 7.5, initial Cr(VI) concentration 130 mg/l, and inoculation percentage 7.75%, and the maximum Cr(VI) removal was 82%. The kinetics study of Cr(VI) removal showed the pseudo-first-order model described experimental data better and was selected as an overall kinetic Cr(VI) removal.

\textit{Keywords:} Cr(VI); Sulfate-reducing bacteria; Response surface methodology; Optimization; Kinetic

\textsuperscript{*Corresponding author.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.