Treatment of wastewater containing imazalil by means of Fenton-based processes


Grupo de Fotocatálisis y Espectroscopía Aplicada al Medioambiente-FEAM (Unidad Asociada al ICMSE, C.S.I.C.), CIDIA-Dpto. de Química, Edificio del Parque Científico Tecnológico, Universidad De Las Palmas De Gran Canaria, Campus Universitario de Tafira, Las Palmas 35017, Spain, emails: dsantiago@proyinves.ulpgc.es (D.E. Santiago), jaranaesp@hotmail.com (J. Araña), ogonzalez@dqui.ulpgc.es (O. González-Díaz), ezequielle@outlook.es (E. Henríquez-Cárdenes), jaortega@gmail.com (J.A. Ortega-Méndez), elisendapm80@hotmail.com (E. Pulido-Melián), j.dona@dqui.ulpgc.es (J.M. Doña-Rodríguez), jpperez@dqui.ulpgc.es (J. Pérez-Peña)

Received 24 November 2014; Accepted 9 June 2015

ABSTRACT

This work studies the elimination, mineralization and detoxification through Fenton-based processes of wastewaters contaminated with the fungicide imazalil as a result of the postharvest treatment of bananas. Fe(II) and H2O2 concentrations were optimized for degradation of the corresponding imazalil concentrations. The activity of the imazalil degradation process was studied in deionized water and in simulated and real agro-industrial wastewaters. Results show that the water matrix had no detrimental effect on wastewater treatment when using the Fenton technique, but optimal iron content had to be increased when applying the photo-Fenton process. Even so, the optimal iron and H2O2 contents required for the photo-Fenton reaction were 6 times and 50% lower, respectively, than for the Fenton procedure. Solar pilot plant tests confirmed the detoxification of two agro-industrial wastewater effluents containing imazalil.

Keywords: Wastewater; Fenton; Imazalil; Banana postharvest; Ions

*Corresponding authors.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.