Optimized adsorption of 4-chlorophenol onto activated carbon derived from milk vetch utilizing response surface methodology

Z. Noorimotlagh a,b, S. Shahriyar a, R. Darvishi Cheshmeh Soltani c*, R. Tajik d

aDepartment of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran, Tel./Fax: +98 61 13736614; email: noorimotlagh.zahra@gmail.com (Z. Noorimotlagh), Tel./Fax: +98 84 12235733; email: simin.shahriyar@gmail.com (S. Shahriyar)
bEnvironmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
cDepartment of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran, Tel./Fax: +98 86 33686443; email: darvishi@arakmu.ac.ir
dDepartment of Occupational Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran, Tel./Fax: +98 86 33662024; email: t.rezatajik@yahoo.com

Received 15 October 2014; Accepted 7 June 2015

ABSTRACT

In the present study, the adsorption of 4-chlorophenol (4-CP) from aqueous solutions was investigated using activated carbon prepared from milk vetch. Scanning electron microscopy, Brunauer–Emmett–Teller, and Fourier transform infrared were carried out to characterize as-prepared activated carbon. The adsorption process was optimized by response surface methodology based on central composite design. Accordingly, a 4-CP removal of 89.52% was obtained with a reaction time of 49 min, initial 4-CP concentration of 56 mg/L, adsorbent dosage of 1 g/L, and initial pH of 7. Among various operational parameters, the adsorbent dosage (F-value = 139.5) produced the largest effect on 4-CP removal (%), while initial pH (F-value = 0.620) presented the lowest effect. The pseudo-second-order kinetic equation described the process reasonably well ($R^2 = 0.9996$). The process followed Langmuir isotherm ($R^2 = 0.9969$) with a maximum adsorption capacity of about 87 mg/g. For chemical regeneration, during three-stage regeneration runs, the removal efficiency (%) of 4-CP decreased from 87.45 to 61.15%, while, in the case of thermal regeneration, it decreased from 87.45 to 77.68%, respectively. Overall, activated carbon derived from milk vetch can be applied as an efficient adsorbent for sequestering 4-CP from aqueous phase with relatively high reusability potential.

Keywords: Adsorption; Phenolic compounds; Precursor; Activated carbon; Experimental design