Removal of phenolic compounds from olive mill wastewater by a Fenton-like system H$_2$O$_2$/Cu(II)—thermodynamic and kinetic modeling

Hamida Iboukhoulefa, Abdeltif Amraneb,c,*, Hocine Kadia

aLaboratoire de Chimie Appliquée et Génie Chimique, Université M. Mammeri, Tizi-Ouzou, Algeria, Tel. + 213663591167; email: bhamidam@yahoo.fr (H. Iboukhoulef), Tel. + 213699541927; email: hocinekadi@yahoo.fr (H. Kadi)

bEcole Nationale Supérieure de Chimie de Rennes, CNRS, Université de Rennes 1, UMR 6226, Avenue du Général Leclerc, CS 50837, Rennes Cedex 7 35708, France, Tel. + 33 0 223238155; Fax: + 33 0 223238120; email: abdeltif.amrane@univ-rennes1.fr (A. Amrane)

cUniversité européenne de Bretagne, 5 boulevard Laennec, 35000 Rennes, France

Received 12 December 2013; Accepted 11 October 2014

ABSTRACT

The degradation of olive mill wastewater was investigated by a Fenton-like process using Cu (II) as a catalyst and hydrogen peroxide as an oxidant. Phenolic compounds degradation increased from 43% at 30°C to 62% at 50°C after 65 min treatment. Nonlinear regression methods allowed to accurately describe the experimental results and among the tested models, namely Lewis, Page-modified, Henderson/Pabis, and diffusion models, the most appropriate was found to be the Lewis model. The degradation was found to follow a first-order kinetic and the activation energy was 21 kJ/mol.

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.