

57 (2016) 18825–18835 August

The influence of carbonization temperature on the modification of TiO_2 in the removal of methyl orange from aqueous solution by adsorption

Shila Jafari^{a,*}, Bahareh Yahyaei^b, Ewelina Kusiak-Nejman^c, Mika Sillanpää^a

^aLaboratory of Green Chemistry, LUT Chemistry, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland, Tel. +358 504 332 348; email: Shila.jafari@lut.fi, shila.sanaz.jafari@gmail.com (S. Jafari), mika.sillanpää@lut.fi (M. Sillanpää) ^bFaculty of Chemistry, Department of Physical Chemistry, Bu-Ali Sina University, Hamedan, Iran, email: bahareh.yahyaei@gmail.com

^cSzczecin Institute of Inorganic Technology and Environment Engineering, West Pomeranian University of Technology, Szczecin, Poland, email: ewelina.Kusiak@zut.edu.pl

Received 13 July 2015; Accepted 11 September 2015

ABSTRACT

This work investigated the adsorption ability of unmodified and carbon-modified TiO_2 nanoparticles for the removal of methyl orange (MO) from aqueous solution. Carbon– TiO_2 was obtained by carbonization of ethanol vapors at three different temperatures (200, 300, and 400 °C), and their adsorption was compared with unmodified TiO_2 nanoparticles. The Freundlich adsorption model was found to fit for TiO_2 and C– TiO_2 -200, while carbon modification of TiO_2 at a high temperature fitted the Langmuir–Freundlich model (C– TiO_2 -300 and C– TiO_2 -400). Generally, the carbonization of C– TiO_2 increased the adsorption capacity of TiO_2 nanoparticles, however the BET surface of modified and pristine TiO_2 was almost the same. The zeta potential of modified TiO_2 is higher than unmodified TiO_2 , which leads to efficient adsorption of MO onto modified TiO_2 .

Keywords: Methyl orange; Dye; TiO₂; Carbon modification; Zeta potential; Adsorption

*Corresponding author.

1944-3994/1944-3986 © 2015 The Author(s). Published by Taylor & Francis.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.