Accumulated impact of operating conditions on the specific cake resistance in dead-end microfiltration mode

Zhan Wanga, Ximing Zhanga, Xu Wangb,*, Yawen Lyuc

aBeijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, P.R. China, Tel. +86 10 6739 6186; emails: wangzhan3401@163.com (Z. Wang), zhangximing@emails.bjut.edu.cn (X. Zhang)

bWeather Modification Office, Xingjiang Uygur Autonomous Region of China, Urumqi 830002, P.R. China, Tel. +86 0991 2650440; email: wangxu2323@vip.163.com

cBeijing Rosedale Filter Systems Company, Beijing 100176, P.R. China, Tel. +86 1350 1018802; email: yawen73@163.com

Received 6 April 2014; Accepted 13 October 2014

ABSTRACT

A series of dead-end unstirred microfiltration experiments were conducted. Impact of different operating conditions (trans-membrane pressure (TMP), temperature, and concentration) on the specific cake resistance (SCR) using yeast suspension and polyethersulfone membranes of 0.1 \(\mu \text{m} \) was systematically studied. The results showed that TMP, temperature, and concentration have a significant influence on the SCR. The SCR increased with the increasing concentration and TMP, while decreased with the increasing temperature. The sequence of average accumulated impact of the operating conditions on the SCR was TMP (54.6%) > temperature (−24.2%) > concentration (21.1%). The total accumulated impact of operating conditions on the SCR was 44.5%. This result provides the basis for process optimization and process modeling.

Keywords: Impact; Operating conditions; Specific cake resistance; Dead-end unstirred; Multi-regression method

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.